456
Views
0
CrossRef citations to date
0
Altmetric
Research article

Synthesis, characterization, optical, and sensing investigations for Fe-BDC doped with 10 wt.% of activated food waste biochar

, , , , , , & show all
Pages 23-33 | Received 26 Jul 2023, Accepted 06 Nov 2023, Published online: 17 Nov 2023

References

  • Parra-Arroyo L, González-González RB, Castillo-Zacarías C, et al. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ. 2022;807:151879.
  • Khasim S, Dastager SG, Alahmdi MI, et al. Novel biogenic synthesis of Pd/TiO@ BC as an electrocatalytic and possible energy storage materials. Ceram. Int. 2023;49(10):15874–15883.
  • Ezejiofor TIN, Enebaku UE, Ogueke C. Waste to wealth-value recovery from agro-food processing wastes using biotechnology: a review. Br Biotechnol J. 2014;4(4):418.
  • Ezz H, Ibrahim MG, Fujii M, et al. Enhanced removal of methylene blue dye by sustainable biochar derived from rice straw digestate. Key Eng Mater. 2022;932:119–129.
  • Mohiddin MNB, Tan YH, Seow YX, et al. Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: a review. J Ind Eng Chem. 2021;98:60–81.
  • Deng L, Zhang Y, Wang Y, et al. In situ N-, P-and ca-codoped biochar derived from animal bones to boost the electrocatalytic hydrogen evolution reaction. ResouConserv Recycl. 2021;170:105568.
  • Matzek LW, Tipton MJ, Farmer AT, et al. Activated biochar for the detection of heavy metals in water. Environ Sci Technol. 2018;52(10):5875–5882. doi: 10.1021/acs.est.8b00015
  • Khasim S, Dastager SG, Alahmdi MI, et al. Novel biogenic synthesis of Pd/TiO@ BC as an electrocatalytic and possible energy storage materials. Ceram Int. 2023;49(10):15874–15883.
  • Eddaoudi M, Moler DB, Li H, et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal− organic carboxylate frameworks. Acc Chem Res. 2001;34(4):319–330.
  • Chen K, Wang XL, Hu W, et al. Modified metal− organic frameworks for electrochemical applications. Small Struct. 2022;3(5):2100200.
  • Vazhappilly T, Ghanty TK, Jagatap BN. Computational modeling of adsorption of xe and kr in M-MOF-74 metal organic frame works with different metal atoms. J Phys Chem C. 2016;120(20):10968–10974.
  • Dan-Hardi M, Serre C, Frot T, et al. A new photoactive crystalline highly porous titanium (IV) dicarboxylate. J Am Chem Soc. 2009;131(31):10857–10859.
  • Herrera-Herrera PA, Rodríguez-Sevilla E, Varela AS. The role of the metal center on charge transport rate in MOF-525: cobalt and nickel porphyrin. Dalton Trans. 2021;50(46):16939–16944.
  • Rahmanifar MS, Hesari H, Noori A, et al. A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high-performance supercapacitor electrode material. Electrochimica Acta. 2018;275:76–86.
  • Panda J, Singha D, Panda PK, et al. Experimental and DFT study of transition metal doping in a zn-BDC MOF to improve electrical and visible light absorption properties. J Phys Chem C. 2022;126(30):12348–12360.
  • Khasim S, Pasha A, Badi N, et al. PVA treated PEDOT-PSS: TiO2 nanocomposite based high-performance sensors towards detection of relative humidity and soil moisture content for agricultural applications. J Polym Environ. 2021;29(2):612–623. doi: 10.1007/s10924-020-01905-6
  • Abba S, Wadumi Namkusong J, Lee JA, et al. Design and performance evaluation of a low-cost autonomous sensor interface for a smart iot-based irrigation monitoring and control system. Sensors. 2019;19(17):3643.
  • Sobhan A, Jia F, Kelso LC, et al. A novel activated biochar-based immunosensor for rapid detection of E. coli O157: H7. Biosens (Basel). 2022;12(10):908.
  • Roe SK, Green TP, Johnson RW. Resistive humidity sensing with activated biochar nanocomposites. Sensors Actuat B Chem. 2023;355:123–130.
  • Lv C, Hu C, Luo J, et al. Recent advances in graphene-based humidity sensors. Nanomaterials. 2019;9(3):422.
  • Haq Khan ZU, Khan TM, Khan A, et al. Brief review: applications of nanocomposite in electrochemical sensor and drugs delivery. Front Chem. 2023;11:1152217. doi: 10.3389/fchem.2023.1152217
  • Li R, Han X, Liu Q, et al. Enhancing hydrogen adsorption capacity of metal organic frameworks M (BDC) TED0. 5 through constructing a bimetallic structure. ACS Omega. 2022;7(23):20081–20091.
  • Hamdy A, Mostafa MK, Nasr M. Regression analysis and artificial intelligence for removal of methylene blue from aqueous solutions using nanoscale zero-valent iron. Int J Environ Sci Technol. 2019;16:357–372.
  • Chang H, Zhou Y, Zhang S, et al. CO2‐induced 2D Ni‐BDC metal–organic frameworks with enhanced photocatalytic CO2 reduction activity. Adv Mater Interfaces. 2021;8(13):2100205.
  • Guerrero-Medina J, Mass-González G, Pacheco-Londoño L, et al. Long and local range structural changes in M [(bdc)(ted) 0.5](M= zn, ni or cu) metal organic frameworks upon spontaneous thermal dispersion of LiCl and adsorption of carbon dioxide. Microporous Mesoporous Mater. 2015;212:8–17.
  • Alfadhli S, Darwish AAA, Soliman S, et al. Structural characterizations and photoelectric performance of non-crystalline boron subphthalocyanine chloride films/FTO for photodiode applications. J Non-Crystalline Solids. 2023;601:122044.
  • Khanna PK, Gaikwad S, Adhyapak PV, et al. Synthesis and characterization of copper nanoparticles. Mater Lett. 2007;61(25):4711–4714.
  • Girish CR, Ramachandra Murty V. Adsorption of phenol from aqueous solution using Lantana camara, forest waste: kinetics, isotherm, and thermodynamic studies. Int Sch Res Not. 2014;2014:1–6.
  • Wemple SH, DiDomenico M Jr. Theory of the elasto-optic effect in nonmetallic crystals. Phys Rev B. 1970;1(1):193.
  • Al-Ghamdi SA, Hamdalla TA, Darwish AAA, et al. Preparation, Raman spectroscopy, surface morphology and optical properties of TiPcCl 2 nanostructured films: thickness effect. Opt Quantum Electron. 2021;53:1–16.
  • Musho T, Li J, Wu N. Band gap modulation of functionalized metal–organic frameworks. Phys Chem Chem Phys. 2014;16(43):23646–23653.
  • Huo Y, Bu M, Ma Z, et al. Flexible, non-contact and multifunctional humidity sensors based on two-dimensional phytic acid doped co-metal organic frameworks nanosheets. J Colloid Interface Sci. 2022;607:2010–2018.
  • Meng W, Wu S, Wang X, et al. High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. Sens Actuators B Chem. 2020;315:128058. doi: 10.1016/j.snb.2020.128058
  • Ruiz V, Fernández I, Carrasco P, et al. Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors. Sens Actuators B Chem. 2015;218:73–77. doi: 10.1016/j.snb.2015.04.092
  • Zhang D, Tong J, Xia B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens Actuators B Chem. 2014;197:66–72. doi: 10.1016/j.snb.2014.02.078
  • Malik R, Tomer VK, Chaudhary V, et al. An excellent humidity sensor based on in–SnO2 loaded mesoporous graphitic carbon nitride. J Mater Chem A. 2017;5(27):14134–14143. doi: 10.1039/C7TA02860A
  • Yu S, Chen C, Zhang H, et al. Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens Actuators B Chem. 2021;332:129536. doi: 10.1016/j.snb.2021.129536
  • Zhang, D., Chen, H., Zhou, X., Wang, D., Jin, Y. and Yu, S. In-situ polymerization of metal organic frameworks-derived ZnCo2O4/polypyrrole nanofilm on QCM electrodes for ultra-highly sensitive humidity sensing application. Sens Actuators A. 2019;295:687–695. doi: 10.1016/j.sna.2019.06.050
  • Chen H, Zhang D, Pan Q, et al. Highly sensitive QCM humidity sensor based on MOFs-derived SnO2/chitosan hybrid film. IEEE Sens J. 2021;21(4):4385–4390. doi: 10.1109/JSEN.2020.3029431