408
Views
0
CrossRef citations to date
0
Altmetric
Research article

Magnetically separable CeO2/CoFe2O4 heterojunction photocatalysts for dye degradation: characterization and mechanism

ORCID Icon, &
Pages 44-58 | Received 08 Sep 2023, Accepted 28 Nov 2023, Published online: 05 Dec 2023

References

  • Sonu DV, Sharma S Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J Saudi Chem Soc. 2019;23(8):1119–1136. 2019/12/01/. doi: 10.1016/j.jscs.2019.07.003
  • Hosny NM, Gomaa I, Elmahgary MG. Adsorption of polluted dyes from water by transition metal oxides: a review. Appl Surf Sci. 2023;15:100395. 2023/06/01/. doi: 10.1016/j.apsadv.2023.100395.
  • Islam T, Repon MR, Islam T, et al. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environ Sci Pollut Res. 2023;30(4):9207–9242. 2023/01/01. doi: 10.1007/s11356-022-24398-3
  • Rafiq A, Ikram M, Ali S, et al. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem. 2021;97:111–128. 2021/05/25/ doi: 10.1016/j.jiec.2021.02.017
  • Nguyen V-H, Nguyen B-S, Jin Z, et al. Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem Eng J. 2020;402:126184. 2020/12/15/ doi: 10.1016/j.cej.2020.126184
  • Foteinis S, Chatzisymeon E. 4 - Heterogeneous photocatalysis for water purification. In: Boukherroub R, Ogale S, and Robertson N, editors. Nanostructured photocatalysts. Amsterdam, Netherlands: Elsevier; 2020. pp. 75–97. doi:10.1016/B978-0-12-817836-2.00004-1.
  • Hasija V, Nguyen V-H, Kumar A, et al. Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. J Hazard Mater. 2021;413:125324. 2021/07/05/ doi: 10.1016/j.jhazmat.2021.125324
  • Rajeshwar K, Osugi ME, Chanmanee W, et al. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C Photochem Rev. 2008;9(4):171–192. 2008/12/01/. doi: 10.1016/j.jphotochemrev.2008.09.001
  • Kumari P, Bahadur N, Kong L, et al. Engineering schottky-like and heterojunction materials for enhanced photocatalysis performance – a review [10.1039/D1MA01062J]. Mater Adv. 2022;3(5):2309–2323. :
  • Venci X, George A, Raj AD, et al. Photocatalytic degradation effect of CdSe nanoparticles for textile wastewater effluents at low cost and proves to be efficient method. Environ Res. 2022;213:113595. 2022/10/01/ doi: 10.1016/j.envres.2022.113595
  • Krishnan A, Swarnalal A, Das D, et al. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J Environ Sci. 2024;139:389–417. doi:10.1016/j.jes.2023.02.051.
  • Thasirisap E, Vittayakorn N, Seeharaj P. Surface modification of TiO2 particles with the sono-assisted exfoliation method. Ultrason Sonochem. 2017;39:733–740. 2017/11/01/. doi: 10.1016/j.ultsonch.2017.06.002.
  • Murillo-Sierra JC, Hernández-Ramírez A, Hinojosa-Reyes L, et al. A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem Eng J Adv. 2021;5:100070. 2021/03/15/ doi: 10.1016/j.ceja.2020.100070
  • Koppala S, Xia Y, Zhang L, et al. Hierarchical ZnO/Ag nanocomposites for plasmon-enhanced visible-light photocatalytic performance. Ceram Int. 2019;45(12):15116–15121. 2019/08/15/. doi: 10.1016/j.ceramint.2019.04.252
  • Jiang X, Kong D, Luo B, et al. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity. Colloids Surf A Physicochem Eng Asp. 2022;633:127880. 2022/01/20/ doi: 10.1016/j.colsurfa.2021.127880
  • Jiang X, Wang M, Luo B, et al. Magnetically recoverable flower-like Sn3O4/SnFe2O4 as a type-II heterojunction photocatalyst for efficient degradation of ciprofloxacin. J Alloys Compd. 2022;926:166878. 2022/12/10/ doi: 10.1016/j.jallcom.2022.166878
  • Duan K, Que T, Koppala S, et al. A facile route to synthesize n-SnO 2 /p-CuFe 2 O 4 to rapidly degrade toxic methylene blue dye under natural sunlight. RSC Adv. 2022;12(26):16544–16553. :
  • Sonu SS, Dutta V An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. J Environ Chem Eng. 2021;9(5):105812. 2021/10/01/. doi: 10.1016/j.jece.2021.105812
  • Abroushan E, Farhadi S, Zabardasti A. Ag 3 PO 4 /CoFe 2 O 4 magnetic nanocomposite: synthesis, characterization and applications in catalytic reduction of nitrophenols and sunlight-assisted photocatalytic degradation of organic dye pollutants. RSC Adv. 2017;7(30):18293–18304. doi: 10.1039/C7RA01728F
  • El-Shobaky GA, Turky AM, Mostafa NY, et al. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation. J Alloys Compd. 2010;493(1):415–422. 2010/03/18/. doi: 10.1016/j.jallcom.2009.12.115
  • Pasupong P, Choojun K, Vittayakorn N, et al. Synthesis of nanocrystalline cobalt ferrite by the sonochemical method in highly basic aqueous solution. Key Eng Mater. 2017;751:368–373. doi: 10.4028/www.scientific.net/KEM.751.368
  • Cannas C, Falqui A, Musinu A, et al. CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: synthesis, structure and magnetic properties. J Nanopart Res. 2006;8(2):255–267. 2006/04/01. doi: 10.1007/s11051-005-9028-7
  • Hafeez HY, Lakhera SK, Narayanan N, et al. Environmentally sustainable synthesis of a CoFe2O4–TiO2/rGO Ternary photocatalyst: a highly efficient and stable photocatalyst for high production of hydrogen (solar fuel). ACS Omega. 2019;4(1):880–891. 2019/01/31. doi: 10.1021/acsomega.8b03221
  • Zhang L, Zhang A, Lu H, et al. Magnetically separable AgI–BiOI/CoFe 2 O 4 hybrid composites for Hg 0 removal: characterization, activity and mechanism. RSC Adv. 2017;7(50):31448–31456. :
  • Yang H. A short review on heterojunction photocatalysts: carrier transfer behavior and photocatalytic mechanisms. Mater Res Bull. 2021;142:111406. 2021/10/01/. doi: 10.1016/j.materresbull.2021.111406.
  • Kumar R, Sudhaik A, Sonu, et al. Graphene oxide modified K, P co-doped g-C3N4 and CoFe2O4 composite for photocatalytic degradation of antibiotics. J Taiwan Inst Chem Eng. 2023;150:105077. 2023/09/01/ doi: 10.1016/j.jtice.2023.105077
  • Sharma K, Hasija V, Patial S, et al. Recent progress on MXenes and MOFs hybrids: structure, synthetic strategies and catalytic water splitting. Int J Hydrogen Energy. 2023;48(17):6560–6574. 2023/02/26/. doi: 10.1016/j.ijhydene.2022.01.004
  • Sathishkumar P, Mangalaraja RV, Anandan S, et al. CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of reactive red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem Eng J. 2013;220:302–310. 2013/03/15/ doi: 10.1016/j.cej.2013.01.036
  • Ibrahim I, Belessiotis GV, Elseman AM, et al. Magnetic TiO2/CoFe2O4 photocatalysts for degradation of organic dyes and pharmaceuticals without oxidants. Nanomaterials. 2022;12(19):3290. :
  • Fu W, Yang H, Li M, et al. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater Lett. 2005;59(27):3530–3534. 2005/11/01/. doi: 10.1016/j.matlet.2005.06.071
  • Wilson A, Mishra SR, Gupta R, et al. Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres. J Magn Magn Mater. 2012;324(17):2597–2601. 2012/08/01/. doi: 10.1016/j.jmmm.2012.02.009
  • Li Z, Ai J, Ge M. A facile approach assembled magnetic CoFe2O4/AgBr composite for dye degradation under visible light. J Environ Chem Eng. 2017;5(2):1394–1403. 2017/04/01/. doi: 10.1016/j.jece.2017.02.024
  • Duangjam S, Wetchakun K, Phanichphant S, et al. Hydrothermal synthesis of novel CoFe2O4/BiVO4 nanocomposites with enhanced visible-light-driven photocatalytic activities. Mater Lett. 2016;181:86–91. 2016/10/15/ doi: 10.1016/j.matlet.2016.06.024
  • Mahdikhah V, Ataie A, Akbari Moayyer H, et al. Magnetic and photocatalytic properties of CoFe2O4/Ni nanocomposites. J Electroceram. 2022;48(1):51–66. 2022/02/01. doi: 10.1007/s10832-021-00271-6
  • Fu Y, Chen H, Sun X, et al. Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B Environ. 2012;111-112:280–287. 2012/01/12/ doi: 10.1016/j.apcatb.2011.10.009
  • Mahdikhah V, Saadatkia S, Sheibani S, et al. Outstanding photocatalytic activity of CoFe2O4/rGO nanocomposite in degradation of organic dyes. Opt Mater. 2020;108:110193. 2020/10/01/ doi: 10.1016/j.optmat.2020.110193
  • Gan L, Xu L, Qian K. Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic dyes. Mater Design. 2016;109:354–360. 2016/11/05/. doi: 10.1016/j.matdes.2016.07.043.
  • Huang S, Xu Y, Xie M, et al. Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A Physicochem Eng Asp. 2015;478:71–80. 2015/08/05/ doi: 10.1016/j.colsurfa.2015.03.035
  • Xiong P, Chen Q, He M, et al. Cobalt ferrite–polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances [10.1039/C2JM31522J]. J Mater Chem. 2012;22(34):17485–17493. :
  • Magesh G, Viswanathan B, Viswanath B, et al. Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian J Chem. 2009;48A:480–488.
  • Abdullah H, Khan MR, Pudukudy M, et al. CeO2-TiO2 as a visible light active catalyst for the photoreduction of CO2 to methanol. J Rare Earths. 2015;33(11):1155–1161. 2015/11/01/. doi: 10.1016/S1002-0721(14)60540-8
  • Seeharaj P, Vittayakorn N, Morris J, et al. CeO2/CuO/TiO2 heterojunction photocatalysts for conversion of CO2 to ethanol. Nanotechnology. 2021;32(37):375707. 2021/06/24. doi: 10.1088/1361-6528/ac08be
  • Seeharaj P, Kongmun P, Paiplod P, et al. Ultrasonically-assisted surface modified TiO(2)/rGO/CeO2 heterojunction photocatalysts for conversion of CO2 to methanol and ethanol. Ultrason Sonochem. 2019 Nov;58:104657
  • Wetchakun N, Chaiwichain S, Wetchakun K, et al. Synthesis and characterization of novel magnetically separable CoFe2O4/CeO2 nanocomposite photocatalysts. Mater Lett. 2013;113:76–79. 2013/12/15/ doi: 10.1016/j.matlet.2013.09.008
  • Zhu F, Ji Q, Lei Y, et al. Efficient degradation of orange II by core shell CoFe2O4–CeO2 nanocomposite with the synergistic effect from sodium persulfate. Chemosphere. 2022;291:132765. 2022/03/01/ doi: 10.1016/j.chemosphere.2021.132765
  • Ghasemi S, Setayesh SR, Habibi-Yangjeh A, et al. Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants. J Hazard Mater. 2012;199-200:170–178. 2012/01/15/ doi: 10.1016/j.jhazmat.2011.10.080
  • Hezam A, Namratha K, Drmosh QA, et al. CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction. ACS Appl Nano Mater. 2020;3(1):138–148. 2020/01/24. doi: 10.1021/acsanm.9b01833
  • Prabhakaran T, Mangalaraja RV, Denardin JC. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method. Mater Res Express. 2018;5(2):026102. 2018/02/01. doi: 10.1088/2053-1591/aaa73f
  • Seeharaj P, Charoonsuk T, Pasupong P, et al. Phase formation, microstructure, and densification of yttrium-doped barium zirconate prepared by the sonochemical method. Int J Applied Ceramic Tech. 2016;13(1):200–208. :
  • Channei D, Inceesungvorn B, Wetchakun N, et al. Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci Rep. 2014;4(1):5757. 2014/08/29. doi: 10.1038/srep05757
  • Duru IP. Electronic and magnetic properties of CoFe2O4 nanostructures: an ab-initio and Monte Carlo study. Phys B Condens Matter. 2022;627:413548. 2022/02/15/. doi: 10.1016/j.physb.2021.413548.
  • Nadjia L, Abdelkader E, Naceur B, et al. CeO2 nanoscale particles: synthesis, characterization and photocatalytic activity under UVA light irradiation. J Rare Earths. 2018;36(6):575–587. 2018/06/01/. doi: 10.1016/j.jre.2018.01.004
  • Charan C, Shahi VK. Cobalt ferrite (CoFe 2 O 4) nanoparticles (size: ∼10 nm) with high surface area for selective non-enzymatic detection of uric acid with excellent sensitivity and stability. RSC Adv. 2016;6(64):59457–59467. doi: 10.1039/C6RA08746A
  • Cannas C, Ardu A, Peddis D, et al. Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies. J Colloid Interface Sci. 2010;343(2):415–422. 2010/03/15/. doi: 10.1016/j.jcis.2009.12.007
  • Pourgolmohammad B, Masoudpanah SM, Aboutalebi MR. Synthesis of CoFe2O4 powders with high surface area by solution combustion method: effect of fuel content and cobalt precursor. Ceram Int. 2017;43(4):3797–3803. 2017/03/01/. doi: 10.1016/j.ceramint.2016.12.027
  • Yuejuan W, Jingmeng M, Mengfei L, et al. Preparation of high-surface area Nano-CeO2 by template-assisted precipitation method. J Rare Earths. 2007;25(1):58–62. 2007/02/01/. doi: 10.1016/S1002-0721(07)60045-3
  • Saikia H, Hazarika KK, Chutia B, et al. A simple chemical route toward high surface area CeO2 nanoparticles displaying remarkable radical scavenging activity. ChemistrySelect. 2017;2(11):3369–3375. :
  • Guo M-N, Guo C-X, Jin L-Y, et al. Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation. Mater Lett. 2010;64(14):1638–1640. 2010/07/31/. doi: 10.1016/j.matlet.2010.04.018
  • Nassar MY, Khatab M. Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal [10.1039/C6RA12852A]. RSC Adv. 2016;6(83):79688–79705. doi: 10.1039/C6RA12852A
  • De Faria LA, Trasatti S. The point of zero charge of CeO2. J Colloid Interface Sci. 1994;167(2):352–357. 1994/10/15/. doi: 10.1006/jcis.1994.1370
  • Azeez F, Al-Hetlani E, Arafa M, et al. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep. 2018;8(1):7104. 2018/05/08. doi: 10.1038/s41598-018-25673-5
  • Fan Z, Meng F, Gong J, et al. Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures. Mater Lett. 2016;175:36–39. 2016/07/15/ doi: 10.1016/j.matlet.2016.03.136
  • Khan I, Saeed K, Zekker I, et al. Review on methylene blue: its properties, uses, toxicity and photodegradation. Water. 2022;14(2):242. :
  • Ye H, Xia L, Wang Y, et al. Magnetic Ag3PO4/CoFe2O4 Z-scheme heterojunction material for photocatalytic decomposition of ofloxacin. J Mater Sci Mater Electron. 2023;34(31):2090. 2023/11/05. doi: 10.1007/s10854-023-11567-4
  • Ranjith KS, Rajendra Kumar RT. Regeneration of an efficient, solar active hierarchical ZnO flower photocatalyst for repeatable usage: controlled desorption of poisoned species from active catalytic sites [10.1039/C6RA27380G]. RSC Adv. 2017;7(9):4983–4992. doi: 10.1039/C6RA27380G
  • Kulthananat T, Kim-Lohsoontorn P, Seeharaj P. Ultrasonically assisted surface modified CeO2 nanospindle catalysts for conversion of CO2 and methanol to DMC. Ultrason Sonochem. 2022;90:106164. 2022/11/01/. doi: 10.1016/j.ultsonch.2022.106164.
  • Pradhan AC, Paul A, Rao GR. Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3−MCM-41 for methylene blue remediation. J Chem Sci. 2017;129(3):381–395. 2017/03/01. doi: 10.1007/s12039-017-1230-5
  • Ovchinnikov OV, Evtukhova AV, Kondratenko TS, et al. Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib Spectrosc. 2016;86:181–189. 2016/09/01/ doi: 10.1016/j.vibspec.2016.06.016