370
Views
1
CrossRef citations to date
0
Altmetric
Research article

Influence of MgO-Al2O3 hollow sphere content on the microstructure and mechanical properties of calcium hexaluminate porous ceramics

ORCID Icon, , , &
Pages 59-70 | Received 31 May 2023, Accepted 05 Dec 2023, Published online: 08 Dec 2023

References

  • Zhang B, Liu Y, Li X, et al. Closed-cell ZrO2/SiC-based composite nanofibers with efficient electromagnetic wave absorption and thermal insulation properties. J Alloys Compd. 2022;927:167036. doi: 10.1016/j.jallcom.2022.167036
  • Zhang B, Tong Z, Pang Y, et al. Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation. Compos Sci Technol. 2022;218:109152. doi: 10.1016/j.compscitech.2021.109152
  • Borges OH, Santos Junior T, Oliveira RRB, et al. Macroporous high-temperature insulators physical properties by in situ CA6 formation: does the calcium source matter? J Eur Ceram Soc. 2020;40(10):3679–3686. doi: 10.1016/j.jeurceramsoc.2020.04.001
  • Borges OH, Santos T, Salvini VR, et al. CA6-based macroporous refractory thermal insulators containing mineralizing agents. J Eur Ceram Soc. 2020;40(15):6141–6148. doi: 10.1016/j.jeurceramsoc.2020.07.011
  • Chen R, Jia W, Shan Q, et al. A novel design of Al2O3-ZrO2 reticulated porous ceramics with hierarchical pore structures and excellent properties. J Eur Ceram Soc. 2019;39(5):1877–1886. doi: 10.1016/j.jeurceramsoc.2019.01.007
  • Dong B, Wang F, Yu J, et al. Production of calcium hexaluminate porous planar membranes with high morphological stability and low thermal conductivity. J Eur Ceram Soc. 2019;39(14):4202–4207. doi: 10.1016/j.jeurceramsoc.2019.06.031
  • Hnatko M, Tatarková M, Galusková D, et al. Corrosion of engineering ceramic materials by molten iron part II: alumina. Corros Sci. 2016;109:230–237. doi: 10.1016/j.corsci.2016.04.007
  • Das D, Nijhuma K, Gabriel AM, et al. Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration. J Eur Ceram Soc. 2020;40(5):2163–72. doi: 10.1016/j.jeurceramsoc.2020.01.034
  • Dong B, Min Z, Guan L, et al. Porous mullite-bonded SiC filters prepared by foaming-sol-gel-tape casting for high-efficiency hot flue gas filtration. Sep Purif Technol. 2022;295:121338. doi: 10.1016/j.seppur.2022.121338
  • Kirdyashkin A, Gabbasov R, Kitler V, et al. Ceramic sintering furnace based on combustion of premixed natural gas in porous inert media. Fuel. 2022;309:122098. doi: 10.1016/j.fuel.2021.122098
  • Yun T, Du J, Ji X, et al. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer graphene/carboxymethyl cellulose composite. Carbohydr Polym. 2023;313:120898. doi: 10.1016/j.carbpol.2023.120898
  • Wei W, Han Y, Chen J, et al. Fabrication of robust SiC ceramic membrane filter with optimized flap for industrial coal-fired flue gas filtration. Sep Purif Technol. 2022;302:122075. doi: 10.1016/j.seppur.2022.122075
  • Arai Y, Saito M, Samizo A, et al. Hot-corrosion of refractory high-entropy ceramic matrix composites synthesized by alloy melt-infiltration. Ceram Int. 2021;47(22):31740–31748. doi: 10.1016/j.ceramint.2021.08.055
  • Li J, Yang F, Liu D, et al. Graphene composite paper synergized with micro/nanocellulose-fiber and silk fibroin for flexible strain sensor. Int j biol macromol. 2023;240:124439. doi: 10.1016/j.ijbiomac.2023.124439
  • Luz AP, Moreira MH, Braulio MAL, et al. Drying behavior of dense refractory ceramic castables. Part 1 – General aspects and experimental techniques used to assess water removal. Ceram Int. 2021;47(16):22246–22268. doi: 10.1016/j.ceramint.2021.05.022
  • Chen A, Wang X, Zhou W, et al. Oxidation resistance of Al2O3–SiC–C castables with different grades of andalusite. J Alloys Compd. 2021;851:156836. doi: 10.1016/j.jallcom.2020.156836
  • Ye H, Le F, Wei C, et al. Fatigue crack growth behavior of ti-6Al-4V alloy fabricated via laser metal deposition: effects of building orientation and heat treatment. J Alloys Compd. 2021;868: doi: 10.1016/j.jallcom.2021.159023
  • Fierro M, Gutierrez C, Jovicic V, et al. Hollow spheres as inert packed bed from lean to rich combustion in porous media. Int J Heat & Mass Trans. 2022;195:123067. doi: 10.1016/j.ijheatmasstransfer.2022.123067
  • He Z, Xu Y, Li Y, et al. Preparation of in-doped SnO2 hollow spheres and the solar-heat insulation properties of polyvinylidene fluoride film containing prepared spheres. Mater Today Commun. 2022;33:104398. doi: 10.1016/j.mtcomm.2022.104398
  • Lauermannová A-M, Jankovský O, Lojka M, et al. Lactose/tannin-based calcium aluminate coatings for carbon-bonded alumina foam filters: a novel approach in environment-friendly steel melt filtration. Ceram Int. 2023;49(22):35574–35584. doi: 10.1016/j.ceramint.2023.08.236
  • Salomão R, Ferreira VL, de Oliveira IR, et al. Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates. J Eur Ceram Soc. 2016;36(16):4225–4235. doi: 10.1016/j.jeurceramsoc.2016.05.026
  • Wang L, W-T K, P-Z G, et al. Influence of ceramic substrate porosity and glass phase content on the microstructure and mechanical properties of metallized ceramics via an activated Mo-Mn method. Ceram Int. 2020;46(6):8244–54. doi: 10.1016/j.ceramint.2019.12.052
  • Zhang X, Liang J, Li J, et al. The properties characterization and strengthening-toughening mechanism of Al2O3-CA6-MA-Ni multi-phase composites prepared by adding calcined dolomite. Mater Charact. 2022;186:111810. doi: 10.1016/j.matchar.2022.111810
  • Huang W-Z, Lin F, Lee SL, et al. Fabrication of microporous polyamide selective layer on macroporous ceramic hollow fibers via direct interfacial polymerization for nanofiltration applications. J Membr Sci. 2022;658:120710. doi: 10.1016/j.memsci.2022.120710
  • Jo I-H, Shin K-H, Soon Y-M, et al. Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template. Mater Lett. 2009;63(20):1702–1704. doi: 10.1016/j.matlet.2009.05.017
  • Tsai C-Y, Liu Y-L. Building up ion-conduction pathways in solid polymer electrolytes through surface and pore functionalization of PVDF porous membranes with ionic conductors. J Membr Sci. 2022;651:120456. doi: 10.1016/j.memsci.2022.120456
  • Wang K, Yin R, Lu Y, et al. Soft-hard hybrid covalent-network polymer sponges with super resilience, recoverable energy dissipation and fatigue resistance under large deformation. Mater Sci Eng C. 2021;126:112185. doi: 10.1016/j.msec.2021.112185
  • Huang J, Chen H, Qi R, et al. Porous ceramic membranes from coal fly ash with addition of various pore-forming agents for oil-in-water emulsion separation. J Environ Chem Eng. 2023;11(3):109929. doi: 10.1016/j.jece.2023.109929
  • Pia G, Casnedi L, Ionta M, et al. On the elastic deformation properties of porous ceramic materials obtained by pore-forming agent method. Ceram Int. 2015;41(9):11097–11105. doi: 10.1016/j.ceramint.2015.05.057
  • Pia G, Casnedi L, Sanna U. Porous ceramic materials by pore-forming agent method: an intermingled fractal units analysis and procedure to predict thermal conductivity. Ceram Int. 2015;41(5):6350–6357. doi: 10.1016/j.ceramint.2015.01.069
  • Salleh SZ, Awang Kechik A, Yusoff AH, et al. Recycling food, agricultural, and industrial wastes as pore-forming agents for sustainable porous ceramic production: a review. J Clean Prod. 2021;306:127264. doi: 10.1016/j.jclepro.2021.127264
  • Cao J, Li W, Guo H, et al. Effects of nano-CaCO3 and nano-iron phosphate on microstructure and properties of SiO2 porous ceramics prepared by direct foaming. Mater Today Commun. 2023;35:105690. doi: 10.1016/j.mtcomm.2023.105690
  • Dai H, Dai H. Efficient lean combustion in a novel porous medium burner with the integrated of pellets and ceramic foam: experimental study of flame propagation and stability. Combust Flame. 2022;244:112244. doi: 10.1016/j.combustflame.2022.112244
  • Leng Q, Yao D, Xia Y, et al. Microstructure and permeability of porous zirconia ceramic foams prepared via direct foaming with mixed surfactants. J Eur Ceram Soc. 2022;42(16):7528–7537. doi: 10.1016/j.jeurceramsoc.2022.08.060
  • Chen G, Yang F, Zhao S, et al. Preparation of high-strength porous mullite ceramics and the effect of hollow sphere particle size on microstructure and properties. Ceram Int. 2022;48(13):19367–19374. doi: 10.1016/j.ceramint.2022.03.231
  • Chen JH, Liu PS, Song S. Preparation and compression performance of porous magnesium alloy composite with ceramic hollow spheres. J Alloys Compd. 2022;894:162397. doi: 10.1016/j.jallcom.2021.162397
  • Chen JH, Liu PS, Wang YQ, et al. Mechanical properties of a new kind of porous aluminum alloy composite from ceramic hollow spheres with high strength. J Alloys Compd. 2022;910:164911. doi: 10.1016/j.jallcom.2022.164911
  • Dong Y, Jiang H, Chen A, et al. Near-zero-shrinkage Al2O3 ceramic foams with coral-like and hollow-sphere structures via selective laser sintering and reaction bonding. J Eur Ceram Soc. 2021;41(16):239–246. doi: 10.1016/j.jeurceramsoc.2021.09.023
  • Sebastián E, Murciano A, De Aza PN, et al. Synthesis of 3D porous ceramic scaffolds obtained by the sol-gel method with surface morphology modified by hollow spheres for bone tissue engineering applications. Ceram Int. 2023;49(3):4393–4402. doi: 10.1016/j.ceramint.2022.09.326
  • Yang M, Li J, Man Y, et al. A novel hollow alumina sphere-based ceramic bonded by in situ mullite whisker framework. Mater Design. 2020;186:108334. doi: 10.1016/j.matdes.2019.108334
  • Zaman S, Khan I, Zhang F-M, et al. Synthesis of mediator free hollow BiFeO3 spheres/porous g-C3N4 Z-scheme photocatalysts for CO2 conversion and alizarin red S degradation. Mater Sci Semicond Process. 2023;162:107534. doi: 10.1016/j.mssp.2023.107534
  • Chen A, Li L, Wang C, et al. Novel porous ceramic with high strength and thermal performance using MA hollow spheres. Prog Nat Sci Mater Int. 2022;32(6):732–738. doi: 10.1016/j.pnsc.2022.09.015
  • Fedoročková A, Kalaposová D, Plešingerová B, et al. Synthesis and characterisation of mesoporous MgAl2O4 hollow spheres as a high-value product in a waste recovery strategy. Ceram Int. 2023;49(24):40305–40315. doi: 10.1016/j.ceramint.2023.10.003
  • Chen Y, Wang N, Ola O, et al. Porous ceramics: light in weight but heavy in energy and environment technologies. Mater Sci Eng R Rep. 2021;143:100589. doi: 10.1016/j.mser.2020.100589
  • Fukushima M, Ohji T, Colombo P, et al. Porous Ceramics Including Fibrous Insulation, Structure and Properties of, in: Reference Module in Materials Science and Materials Engineering. Elsevier; 2016. doi: 10.1016/B0-08-043152-6/01396-6
  • Green DJ, et al. Porous ceramic processing. In: Buschow K, Cahn R, Flemings M, Ilschner B, Kramer E Mahajan Seditors. Encyclopedia of materials: science and technology. Oxford: Elsevier; 2001. pp. 7758–61.
  • Chunnilall CJ, Lehman JH, Theocharous E, et al. Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region. Carbon. 2012;50(14):5348–5350. doi: 10.1016/j.carbon.2012.07.014
  • Du J, Sanders AP, Jindal V, et al. Rapid in situ formation and densification of titanium boride (TiB) nano-ceramic via transient liquid phase in electric field activated sintering. Scripta Materialia. 2016;123:95–99. doi: 10.1016/j.scriptamat.2016.06.010
  • Zheng Z, Chen S, Liu X, et al. A bioactive polymethylmethacrylate bone cement for prosthesis fixation in osteoporotic hip replacement surgery. Mater Design. 2021;209:209. doi: 10.1016/j.matdes.2021.109966
  • Cui K, Fu T, Zhang Y, et al. Microstructure and mechanical properties of CaAl12O19 reinforced Al2O3-Cr2O3 composites. J Eur Ceram Soc. 2021;41(15):7935–7945. doi: 10.1016/j.jeurceramsoc.2021.08.024
  • Zivic F, Busarac N, Milenkovic S, et al. General overview and applications of ceramic matrix composites (CMCs). In: Brabazon D, editor. Encyclopedia of materials: composites. Oxford: Elsevier; 2021. pp. 3–19.
  • Li Y, Yang X, Liu D, et al. Permeability of the porous Al2O3 ceramic with bimodal pore size distribution. Ceram Int. 2019;45(5):5952–5957. doi: 10.1016/j.ceramint.2018.12.064
  • Li X, Yu X, Yao D, et al. Gas permeation performance of porous silicon nitride ceramics with controllable pore structures. Ceram Int. 2019;45(17):22351–22356. doi: 10.1016/j.ceramint.2019.07.264
  • Sepulveda P, Ortega FS, Innocentini MDM, et al. Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. J Am Ceram Soc. 2000;83(12):3021–3024. doi: 10.1111/j.1151-2916.2000.tb01677.x
  • Potoczek M, Chmielarz A, MDdM I, et al. Porosity effect on microstructure, mechanical, and fluid dynamic properties of Ti2AlC by direct foaming and gel-casting. J Am Ceram Soc. 2018;101(12):5346–57. doi: 10.1111/jace.15802
  • Chen A, Li L, Ren W, et al. Enhancing thermal insulation and mechanical strength of porous ceramic through size-graded MA hollow spheres. Ceram Int. 2023;49(20):33247–33254. doi: 10.1016/j.ceramint.2023.08.033
  • He J, Li X, Su D, et al. High-strength mullite fibers reinforced ZrO2–SiO2 aerogels fabricated by rapid gel method. J Mater Sci. 2015;50(22):7488–7494. doi: 10.1007/s10853-015-9308-2
  • Yang H, Ye F, Liu Q, et al. Microstructure and properties of the Si3N4/silica aerogel composites fabricated by the sol–gel method via ambient pressure drying. Mater Design. 2015;85:438–443. doi: 10.1016/j.matdes.2015.07.041
  • He J, Li X, Su D, et al. Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc. 2016;36(6):1487–1493. doi: 10.1016/j.jeurceramsoc.2015.11.021
  • Zhang R, Hou X, Ye C, et al. Enhanced mechanical and thermal properties of anisotropic fibrous porous mullite–zirconia composites produced using sol-gel impregnation. J Alloys Compd. 2017;699:511–516. doi: 10.1016/j.jallcom.2017.01.007
  • Jia T, Chen H, Dong X, et al. Preparation of homogeneous mullite fibrous porous ceramics consolidated by propylene oxide. Ceram Int. 2019;45(2):2474–2482. doi: 10.1016/j.ceramint.2018.10.174
  • Hou X, Zhang R, Fang D. Novel whisker-reinforced Al2O3–SiO2 aerogel composites with ultra-low thermal conductivity. Ceram Int. 2017;43(12):9547–9551. doi: 10.1016/j.ceramint.2017.04.043
  • Hou X, Zhang R, Fang D. An ultralight silica-modified ZrO2–SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength. Scripta Materialia. 2018;143:113–116. doi: 10.1016/j.scriptamat.2017.09.028
  • Wu Z, Sun L, Pan J, et al. Fiber reinforced highly porous γ-Y2Si2O7 ceramic fabricated by foam-gelcasting-freeze drying method. Scripta Materialia. 2018;146:331–334. doi: 10.1016/j.scriptamat.2017.12.017
  • Li J, Lei Y, Xu D, et al. Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure. J Sol Gel Sci Techn. 2017;82(3):702–711. doi: 10.1007/s10971-017-4359-2
  • Zhou L, Li Z, Zhu Y. Porous silica/mullite ceramics prepared by foam-gelcasting using silicon kerf waste as raw material. Mater Lett. 2019;239:67–70. doi: 10.1016/j.matlet.2018.12.066
  • Rajpoot S, Malik R, Kim Y-W. Effects of polysiloxane on thermal conductivity and compressive strength of porous silica ceramics. Ceram Int. 2019;45(17):21270–21277. doi: 10.1016/j.ceramint.2019.07.109
  • Zou C, Zhang C, Li B, et al. Microstructure and properties of porous silicon nitride ceramics prepared by gel-casting and gas pressure sintering. Mater Design. 2013;44:114–118. doi: 10.1016/j.matdes.2012.07.056
  • Wu X, Shao G, Shen X, et al. Novel al 2 O 3 –SiO 2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol–gel method. RSC Adv. 2016;6(7):5611–20. doi: 10.1039/C5RA19764C