231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ilmenite-type structure and pervoskite structure mix-phase ceramics at microwave frequency

Pages 79-85 | Received 06 Sep 2023, Accepted 28 Dec 2023, Published online: 05 Jan 2024

References

  • Xiang H-C, Li C-C, Jantunen H, et al. Ultralow loss CaMgGeO4 Microwave dielectric ceramic and its chemical compatibility with silver electrodes for low-temperature cofired ceramic applications. ACS Sustainable Chem Eng. 2018;6(5):6458–6466. doi: 10.1021/acssuschemeng.8b00220
  • George S, Sebastian M-T. Microwave dielectric properties of novel temperature stable high Q Li2Mg1−Zn Ti3O8 and Li2A1−Ca Ti3O8 (A = Mg, Zn) ceramics. J Eur Ceram Soc. 2010;30(12):2585–2592. doi: 10.1016/j.jeurceramsoc.2010.05.010
  • Sebastian M-T. Dielectric materials for wireless communication. Oxford, UK: Elsevier Publishers; 2008.
  • Shu G-J, Yang F, Hao L, et al. Low-firing and microwave dielectric properties of a novel glass-free MoO3-based dielectric ceramic for LTCC applications. J Mater Sci Mater Electron. 2019;30(8):7485–9. doi: 10.1007/s10854-019-01061-1
  • Zhang J, Yue Z-X, Luo Y, et al. Novel low-firing forsterite-based microwave dielectric for LTCC applications. J Am Ceram Soc. 2016;99(4):1122–4. doi: 10.1111/jace.14132
  • Song X-Q, Lei W, Zhou Y-Y, et al. Ultra-low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi2O6-based LTCC. J Am Ceram Soc. 2019;103(2):1–9. doi: 10.1111/jace.16795
  • Chen Y-W, Li E-Z, Duan S-X, et al. Low temperature sintering kinetics and microwave dielectric properties of BaTi5O11 ceramic. ACS Sustainable Chem Eng. 2017;5(11):10606–13. doi: 10.1021/acssuschemeng.7b02589
  • Zhou D, Pang LX, Wang D-W, et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J Mater Chem C. 2017;5(38):10094–8. doi: 10.1039/C7TC03623J
  • Varghese J, Siponkoski T, Teirikangas M, et al. Structural, dielectric and thermal properties of Pb free molybdate based ultra-low temperature glass. ACS Sustainable Chem Eng. 2016;4(7):3897–3904. doi: 10.1021/acssuschemeng.6b00721
  • Xiao M, Sun H-R, Zhou Z-Q, et al. Bond ionicity lattice energy, bond energy, and microwave dielectric properties of Ca1-xSrxWO4 ceramics. Ceram Int. 2018;44(17):20686–20691. doi: 10.1016/j.ceramint.2018.08.062
  • Kim E-S, Kim S-H, Lee B-I. Low-temperature sintering and microwave dielectric properties of CaWO4 ceramics for LTCC applications. J Eur Ceram Soc. 2006;26(10–11): 2101–4. doi: 10.1016/j.jeurceramsoc.2005.09.064
  • Krzmanc M-M, Logar M, Budic B, et al. Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics. J Am Ceram Soc. 2011;94(8):2464–72. doi: 10.1111/j.1551-2916.2010.04378.x
  • Kim ES, Kim SH. Effects of structural characteristics on microwave dielectric properties of (1−x)CaWO4 –xLanbo4 ceramics. J Electroceram. 2006;17(2–4):47–77. doi: 10.1007/s10832-006-8571-7
  • Hu X-Q, Jiang J, Wang J-Z, et al. A new additive-free microwave dielectric ceramic system for LTCC applications: (1 − x)CaWO4 − x(Li0.5Sm0.5)WO4. J Mater Sci Mater Electron. 2020;31(3):2544–2550. doi: 10.1007/s10854-019-02791-y
  • Bian J-J, Ding Y-M. Structure, sintering behavior, and microwave dielectric properties of (1-x)CaWO4-xYLiF4 (0.02. Mater Res Bull. 2015;67:245–250. doi:10.1016/j.materresbull.2014.09.078
  • Zhang S, Su H, Zhang H-W, et al. Microwave dielectric properties of CaWO4–Li2TiO3 ceramics added with LBSCA glass for LTCC applications. Ceram Int. 2016;42(14):15242–15246. doi: 10.1016/j.ceramint.2016.06.161
  • Jeon C-J, Kim E-S. Low-temperature sintering of 0.85CaWO4–0.15LaNbO4 ceramics. Ceram Int. 2008;34(4):921–924. doi: 10.1016/j.ceramint.2007.09.058
  • Liao Q-W, Wang Y-L, Jiang F, et al. Ultra-low fire glass-free Li3FeMo3O12 microwave dielectric ceramics. J Am Ceram Soc. 2014;97(8):2394–6. doi: 10.1111/jace.13073
  • Huang C-L, Chen Y-B, Tasi C-F. Influence of V2O5 additions to 0.8(Mg0.95Zn0.05)TiO3–0.2Ca0.61Nd0.26TiO3 ceramics on sintering behavior and microwave dielectric properties. J Alloys Compd. 2008;454(1–2):454–459. doi: 10.1016/j.jallcom.2006.12.125
  • Yang C, Chen Y, Tzou W, et al. Sintering and microwave dielectric characteristics of MCAS glass-added 0.84 Al2O3–0.16 TiO2 ceramics. Mater Lett. 2003;57:2945.
  • Lu SG, Kwok KW, Chan HLW, et al. Structural and electrical properties of BaTi4O9 microwave ceramics incorporated with glass phase. Mater Sci Eng B. 2003;99(1–3):491. doi: 10.1016/S0921-5107(02)00506-8
  • Surendran KP, Mohanan P, Sebastian MT. The effect of glass additives on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J Solid State Chem. 2004;177(11):4031. doi: 10.1016/j.jssc.2004.07.018
  • Chu Y-J, Jean J-H. Low-fire processing of microwave BaTi4O9 dielectric with crystalline CuB2O4 and BaCuB2O5 additives. Ceram Int. 2013;39(5):5151–5158. doi: 10.1016/j.ceramint.2012.12.011
  • Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microwave Theory Tech. 1960;8(4):402. doi: 10.1109/TMTT.1960.1124749
  • Courtney WE. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans Microwave Theory Tech. 1970;18(8):476. doi: 10.1109/TMTT.1970.1127271
  • Lichtenecker K. Dielektrizitatskonstante naturlicher und kunstlicher mischkorper[J]. Physikalische Zeitschrift. Phys Z. 1926;27:115.
  • Wang Y, Jiqing L, Wang J, et al. Lattice vibrational characteristics, crystal structure and dielectric properties of Ba2MgWO6 microwave dielectric ceramic. Ceramics Int. 2021;47(12):17784–17788. doi: 10.1016/j.ceramint.2021.02.224
  • Zhang C, Luo K, Liu J, et al. Realizing optimized interfacial polarization and impedance matching with CNT-confined Co nanoparticles in hollow carbon microspheres for enhanced microwave absorption. J Mater Sci Tech. 10 March 2024;175:1–9. doi: 10.1016/j.jmst.2023.07.034
  • Kim Y-I, Woodward PM. Crystal structures and dielectric properties of ordered double perovskites containing Mg2+ and Ta5+. J Solid State Chem. 2007 October;180(10):2798–2807.
  • Kreller CR, Uberuaga BP. The role of cation ordering and disordering on mass transport in complex oxides. Curr Opin Solid State Mater Sci. 2021 April;25(2):100899. doi: 10.1016/j.cossms.2021.100899
  • Wesselinowa JM. Phonon damping in ferromagnetic semiconducting thin films. J Magn Magn Mater. 2004 August;279(2–3):276–282. doi: 10.1016/j.jmmm.2003.12.1425
  • Bing-Jing L, Wang S-Y, Liao Y-H, et al. Dielectric properties and crystal structure of (Mg1−xCox)2(Ti0.95Sn0.05)O4 ceramics. J Ceram Soc Japan. 2014;122(11):955–958. doi: 10.2109/jcersj2.122.955
  • Reaney IM, Colla EL, Setter N. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys Part. 1994;33(33):3984. doi: 10.1143/JJAP.33.3984
  • Zhang S, Sahin H, Torun E, et al. Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics. J Am Ceram Soc. 2017 April;100(4):1508–1516. doi: 10.1111/jace.14648