344
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of electrical, corporeal, ocular, and aquaphobic properties of zirconia thin-films by varying substrate temperature for high voltage insulators

ORCID Icon, , ORCID Icon, , &
Pages 71-78 | Received 16 Nov 2023, Accepted 20 Dec 2023, Published online: 25 Jan 2024

References

  • Okolo CC, Ezechukwu OA, Olisakwe CO, et al. Characterization of electrical porcelain insulators from local clays. Int J Res Granthaalayah. 2015;3(1):26–36. doi:10.29121/granthaalayah.v3.i1.2015.3050
  • Liebermann J. High-voltage insulators: basics and trends for producers users and students. Hermsdorf: Fraunhofer Institute for Ceramic Technologies and Systems IKTS; 2012.
  • Contreras JE, Rodríguez EA. Nanostructured insulators: a review of nanotechnology concepts for outdoor ceramic insulators. Ceram Int. 2017;43(12):8545–8550. doi: 10.1016/j.ceramint.2017.04.105
  • Ibrahim A, Nasrat L, Elassal H. Improvement of electrical performance for porcelain insulators using silicone rubber coating. Int J Innov Res Electr Electron Instrum Control Eng. 2014;2(8):1884–1888.
  • Alexe B, Thai VQ, Huy NT, et al. Environmental effects on HV dielectric materials and related sensing technologies. Appl Sci. 2019;9(5):856. doi: 10.3390/app9050856
  • Dana K, Das S, Das KS. Effect of substitution of fly ash for silica in triaxial kaolin silica feldspar system. J Eur Ceram Soc. 2004;24:3169–3175.
  • Anih LU. Indigenous manufacturer and characterization of electrical porcelain insulator. Niger J Technol. 2005;24(1):44–50.
  • Harper C. Handbook of ceramics, glasses, and diamonds. New York: McGraw-Hill Professional; 2001.
  • Sánchez E, Moreno A, Sanz V. Porcelain tile: almost 30 years of steady scientific-technological evolution. Ceramics International. 2010;36(3):831–845. doi: 10.1016/j.ceramint.2009.11.016
  • Ramesh R, Sugumaran CP (2017) Reduction of flashover in ceramic insulator with nanocomposites. In: 2017 3rd international conference on condition assessment techniques in electrical systems (CATCON); Rupnagar, India. IEEE.
  • Tod JH. A history of Electrical Porcelain Industry in the United States; printed privately by Jack H. Todd. 2019; 103:1977. Avail
  • Nillav D, Pachori A. Analysis of ceramic and non-ceramic insulator under different levels of salt contamination. Int J Nov Res Electr Mech Eng. 2015;2(2):37–42. Month: May–August.
  • Amin M. Methods for preparation of nano-composites for outdoor insulation applications. Rev Adv Mater Sci. 2013;34:173–184.
  • Roula A, Boudeghdegh K, Boufafa N. Improving usual an dielectric properties of ceramic high voltage insulators. Cerâmica. 2009;55(334):206–208. doi: 10.1590/S0366-69132009000200014
  • Iqbal Y, Lee W. Microstructural evolution in tri-axial porcelain. J Am Ceram Soc. 2000;83(12):3121–3127. doi: 10.1111/j.1151-2916.2000.tb01692.x
  • Iqbal Y, Lee W. Fired porcelain microstructures revisited. J Am Ceram Soc. 1999;82:3279–3621. doi: 10.1111/j.1151-2916.1999.tb02282.x
  • Olupot P, Jonsson S, Byaruhanga J. Study of glazes and their effects on properties of triaxial electrical porcelains from Ugandan minerals. J Mater Eng Perform. 2010;19:1133–1142. doi:10.1007/s11665-010-9597-1
  • Sekar T, Ganesan N, Nampoothiri N. Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete. Int J Eng Sci. 2011;3(7):5436–5440.
  • Rodríguez EA, Niño CJ, Contreras JE, et al. Influence of incorporation of fired porcelain scrap as partial replacement of quartz on properties of an electrical porcelain. J Clean Prod. 2019;233:501–509. doi: 10.1016/j.jclepro.2019.05.403
  • Fassbinder G. Anewceramic body concept for high strength HV insulators. Stuttgart: LAPP; 2002.
  • Caligaris R, Quaranta N, Caligaris M, et al. Nontraditional raw materials in ceramic industry. Bol Soc Esp Ceram. 2000;39(5):623–626. doi: 10.3989/cyv.2000.v39.i5.779
  • Goeuriot D, Belnou F, Goeuriot P, et al. Nanosized alumina from boehmite additions in alumina porcelain 1. Effect on reactivity and mullitisation. Ceramics Int. 2004;30:883–892. doi: 10.1016/S0272-8842(03)00214-1
  • Goeuriot D, Belnou F, Goeuriot P, et al. Nanosized alumina from boehmite additions in alumina porcelain. Part 2: effect on material properties. Ceramics Int. 2007;33:1243–1249. doi: 10.1016/j.ceramint.2006.03.031
  • Zhuang J, Liu P, Dai W, et al. A novel application of nano anticontamination technology for outdoor high-voltage ceramic insulators. Int J Appl Ceram Technol. 2010;7:E46–E53. doi: 10.1111/j.1744-7402.2009.02395.x
  • Contreras JE (2014) Influencia de la inserción de nano-óxidos cerámicos sobre la microestructura y propiedades de una porcelana triaxial. PhD Thesis, FIME-UANL, Mexico
  • Aigbodion V, Achiv F, Agunsoye O, et al. Evaluation of the electrical porcelain properties of alumina-silicate nano-clay. J Chin Adv Mater Soc. 2015;4:99–109. doi: 10.1080/22243682.2015.1118356
  • Alonso-De la GD, Rodríguez EA, Contreras JE, et al. Effect of nano-TiO2 content on the mechano-physical properties of electro-technical porcelain. Mater Chem Phys. 2020;254:123469. doi: 10.1016/j.matchemphys.2020.123469
  • Correia SL, Oliveira APN, Hotza D, et al. Properties of tri-axial porcelain bodies: interpretation of statistical modeling. J Am Ceram Soc. 2006;89(11):3356–3365. doi: 10.1111/j.1551-2916.2006.01245.x
  • Belhouchet K, Bayadi A, Belhouchet H, et al. Improvement of mechanical and dielectric properties of porcelain insulators using economic raw materials. Boletín de la Sociedad Española de Cerámica y Vidrio. 2019;58(1):28–37.
  • Kumar Paul B, Haldar K, Roy D, et al. Abrupt change of dielectric properties in mullite due to titanium and strontium incorporation by sol–gel method. J Adv Ceram. 2014;3(4):278–286. doi: 10.1007/s40145-014-0119-8
  • Gautam CR, MadheshiyaA M, Mazumder R. Preparation, crystallization, microstructure and dielectric properties of lead bismuth titanate borosilicate glass ceramics. J Adv Ceram. 2014;3(3):194–206. doi: 10.1007/s40145-014-0110-4
  • Hirvonen A, Nowak R, Yamamoto Y, et al. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceram Soc. 2006;26(8):1497–1505.
  • Ray JC, Park DW, Ahn WS. Chemical synthesis of stabilized nanocrystalline zirconia powders. J Indust Eng Chem. 2006;12(1):142–148.
  • Dutta G, Hembram KP, Rao GM, et al. Effects of O vacancies and C doping on dielectric properties of ZrO2Zr O2: a first-principles study. Appl Phys Lett. 2006;89(20): Article ID 202904. doi: 10.1063/1.2388146
  • Keiteb AS, Saion E, Zakaria A, et al. Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. Journal Of Nanomaterials. 2016;2016:1–6. doi: https://doi.org/10.1155/2016/1913609
  • Reddy BM, Sreekanth PM, YamadaY KT. Surface characterization and catalytic activity of sulfate molybdate- and tungstate-promoted Al2O3–ZrO2 solid acid catalysts. J Mol Catal A. 2005;227(1–2):81–89. doi: 10.1016/j.molcata.2004.10.011
  • Mueller R, Jossen R, Pratsinis SE, et al. Zirconia nanoparticles made in spray flames at high production rates. J Am Ceram Soc. 2004;87(2):197–202. doi: 10.1111/j.1551-2916.2004.00197.x
  • Negahdary M, Habibi-Tamijani A, Asadi A, et al. Synthesis of zirconia nanoparticles and their ameliorative roles as additives concrete structures. Journal Of Chemistry. 2013;2013:1–7. doi: 10.1155/2013/314862
  • Lubig A, Buchal C, Gugg D. Epitaxial growth of monoclinic and cubic ZrO2 on Si (100) without prior removal of the native SiO2. Thin Solid Films. 1992;217:125–128.
  • Gao P, Meng LJ, dos Santos MP, et al. Influence of sputtering pressure on the structure and properties of ZrO2 films prepared by rf reactive sputtering. Appl Surface Sci. 2001;173:84–90.
  • Cullity BD. Elements of X ray diffraction. 2nd edn ed. London: Addison-Wesley; 1978. pp. 102–110.
  • Chandra SVJ, Uthanna S, Rao GM. Effect of substrate temperature on the structural, optical and electrical properties of dc magnetron sputtered tantalum oxide films. Appl Surface Sci. 2008;254:1953–1960.
  • Yang C, Fan H, Yingxue X, et al. Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl Surface Sci. 2008;254:2685–2689.
  • Kumar S, Dave V, Krishnan MB, et al. Analysis of physical, ocular, and aquaphobic properties of zirconium oxide nanofilms by varying sputtering pressure. J Nanomater. 2022;2022:1–10.
  • Kim NG, Koo YS, Won CJ, et al. Magnetodielectric effect in BaTiO3-LaMnO3 composites. J Appl Phys. 2007;102:014107–014118.
  • Singh P, Park YA, Sung KD, et al. Magnetic and Ferroelectric Properties of Epitaxial Sr-doped Bifeo3 thin films. Solid State Commun. 2010;150:431–434.
  • Sujit K, Vikramaditya D, Velmurugan KV, et al. Analysis of structural, optical, and aquaphobic properties of zirconium oxide nanofilms by varying sputtering gas. Adv Mater Sci Eng. 2022;2022:1–7. doi: 10.1155/2022/9968485
  • Zambrano A, Alejandra M, Castellar Ortega, GC, Vallejo Lozada, WA, et al. Conceptual approach to thermal analysis and its main applications. Prospectiva. 2017;15(2):117–125.
  • Mehta NS, Sahu A, Pandey N, et al. Effect of sintering on physical, mechanical, and electrical properties of alumina-based porcelain insulator using economic raw materials doped with zirconia. J Aust Ceram Soc. 2019;55(4):987–997. doi: 10.1007/s41779-019-00311-z
  • El-Mehalawy N, Awaad M, Eliyan T, et al. Electrical properties of ZnO/alumina nano-composites for high voltage transmission line insulator. J Mater Sci Mater Electron. 2018;29:13526–13533. doi: 10.1007/s10854-018-9480-7