391
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent progress of porous geopolymers: nanoporosity regulation toward fundamental applications

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-13 | Received 08 Nov 2023, Accepted 24 Jan 2024, Published online: 05 Feb 2024

References

  • Davidovits J. Geopolymer chemistry & applications. Saint-Quentin: Institut Géopolymère; 2011. p. 612.
  • Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal Calorim. 1989;35(2):429–441. doi: 10.1007/BF01904446
  • Giergiczny Z. Fly ash and slag. Cement Concr Res. 2019;124:105826. doi: 10.1016/j.cemconres.2019.105826
  • Altıkulaç A, Turhan Ş, Kurnaz AI, et al. Assessment of the enrichment of heavy metals in coal and its combustion residues. ACS Omega. 2022;7(24):21239–21245. doi: 10.1021/acsomega.2c02308
  • Duan P, Yan CJ, Zhou W, et al. An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure. Mater Des. 2015;74:125–137. doi: 10.1016/j.matdes.2015.03.009
  • Kannan V, Ganesan K. Constr. Build Mater. 2014;51:225–234. doi: 10.1016/j.conbuildmat.2013.10.050
  • Keleştemur O, Demirel B. Effect of metakaolin on the corrosion resistance of structural lightweight concrete. Build Mater. 2015;81:172–178. doi: 10.1016/j.conbuildmat.2015.02.049
  • Aziz A, Bellil A, Hassani I-E-EA-E, et al. Geopolymers based on natural perlite and kaolinic clay from Morocco: synthesis, characterization, properties, and applications. Ceram Int. 2021;47(17):24683–24692. doi: 10.1016/j.ceramint.2021.05.190
  • Firdous R, Stephan D, Djobo JNY. Natural pozzolan based geopolymers: a review on mechanical, microstructural and durability characteristics. Constr Build Mater. 2018;190:1251–1263. doi: 10.1016/j.conbuildmat.2018.09.191
  • Silva G, Castañeda D, Kim S, et al. Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction And Building Materials. 2019;215:633–643. doi: 10.1016/j.conbuildmat.2019.04.247
  • Wang AN, Fang Y, Zhou Y, et al. Green protective geopolymer coatings: interface characterization, modification and life-cycle analysis. Materials. 2022;15(11):3767. doi: 10.3390/ma15113767
  • Planel B, Davy CA, Adler PM, et al. Water permeability of geopolymers emulsified with oil. Cem Concr Res. 2020;135:106108. doi: 10.1016/j.cemconres.2020.106108
  • Liu Y, Yan C, Zhang Z, et al. A facile method for preparation of floatable and permeable fly ash-based geopolymer block. Mater Lett. 2016;185:370–373. doi: 10.1016/j.matlet.2016.09.044
  • Tian Z, Zhang Z, Liu H, et al. Interfacial characteristics and mechanical behaviors of geopolymer binder with steel slag aggregate: insights from molecular dynamics. J Clean Prod. 2022;362:132385. doi: 10.1016/j.jclepro.2022.132385
  • Lecomte I, Liégeois M, Rulmont A, et al. Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag. J Mater Res. 2003;18(11):2571–2579. doi: 10.1557/JMR.2003.0360
  • Hemra K, Aungkavattana P. Effect of cordierite addition on compressive strength and thermal stability of metakaolin based geopolymer. Adv Powder Technol. 2016;27(3):1021–1026. doi: 10.1016/j.apt.2016.04.019
  • Ursu D, Casut C, Miclau M. Elaboration of new materials using hydrothermal methods. Materials. 2022;15(21):7792. doi: 10.3390/ma15217792
  • Wen N, Zhao Y, Yu Z, et al. A sludge and modified rice husk ash-based geopolymer: synthesis and characterization analysis. J Clean Prod. 2019;226:805–814. doi: 10.1016/j.jclepro.2019.04.045
  • Thakur N, Weatherly C, Wimalasinghe R, et al. Fabrication of interconnected macroporosity in geopolymers via inverse suspension polymerization. J Am Ceram Soc. 2019;102(8):4405–4409. doi: 10.1111/jace.16437
  • Xu J, Li M, Zhao D, et al. Research and application progress of geopolymers in adsorption: a review. Nanomaterials. 2022;12(17):3002. doi: 10.3390/nano12173002
  • Pan Y, Bai Y, Chen C, et al. Effect of calcination temperature on geopolymer for the adsorption of cesium. Mater Lett. 2023;330:133355. doi: 10.1016/j.matlet.2022.133355
  • Jin H, Zhang Y, Zhang X, et al. 3D printed geopolymer adsorption sieve for removal of methylene blue and adsorption mechanism. Colloids Surf A Physicochem Eng Asp. 2022;648:129235. doi: 10.1016/j.colsurfa.2022.129235
  • Siyal AA, Shamsuddin MR, Khan MI, et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J Environ Manage. 2018;224:327–339. doi: 10.1016/j.jenvman.2018.07.046
  • Wang X, Su J, Chu X, et al. Adsorption and desorption characteristics of total flavonoids from acanthopanax senticosus on macroporous adsorption resins. Molecules. 2021;26(14):4162. doi: 10.3390/molecules26144162
  • Sanguanpak S, Wannagon A, Saengam C, et al. Porous metakaolin-based geopolymer granules for removal of ammonium in aqueous solution and anaerobically pretreated piggery wastewater. J Clean Prod. 2021;297:126643. doi: 10.1016/j.jclepro.2021.126643
  • Kaewmee P, Song M, Iwanami M, et al. Porous and reusable potassium-activated geopolymer adsorbent with high compressive strength fabricated from coal fly ash wastes. J Clean Prod. 2020;272:122617. doi: 10.1016/j.jclepro.2020.122617
  • Lan K, Zhao D. Functional ordered mesoporous materials: present and future. Nano Lett. 2022;22(8):3177–3179. doi: 10.1021/acs.nanolett.2c00902
  • Zhang E, Casco ME, Xu F, et al. On the origin of mesopore collapse in functionalized porous carbons. Carbon. 2019;149:743–749. doi: 10.1016/j.carbon.2019.04.116
  • Xi X, Wu D, Han L, et al. Highly uniform carbon sheets with orientation-adjustable ordered Mesopores. ACS Nano. 2018;12(6):5436–5444. doi: 10.1021/acsnano.8b00576
  • Chen H, Dong S, Zhang Y, et al. Robust structure regulation of geopolymer as novel efficient amine support to prepare high-efficiency CO2 capture solid sorbent. Chem Eng J. 2022;427:131577. doi: 10.1016/j.cej.2021.131577
  • Ahmad M, Rashid K. Novel approach to synthesize clay-based geopolymer brick: optimizing molding pressure and precursors’ proportioning. Build Mater. 2022;322:126472. doi: 10.1016/j.conbuildmat.2022.126472
  • Marsh A, Heath A, Patureau P, et al. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl Clay Sci. 2018;166:250–261. doi: 10.1016/j.clay.2018.09.011
  • Bouna L, Fakir AAE, Benlhachemi A, et al. Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay. Appl Clay Sci. 2020;196:105764. doi: 10.1016/j.clay.2020.105764
  • El-Naggar KAM, Amin SK, El-Sherbiny SA, et al. Preparation of geopolymer insulating bricks from waste raw materials. Construction And Building Materials. 2019;222:699–705. doi: 10.1016/j.conbuildmat.2019.06.182
  • Zawrah MF, Sadek HEH, Ngida REA, et al. Effect of low-rate firing on physico-mechanical properties of unfoamed and foamed geopolymers prepared from waste clays. Ceram Int. 2022;48(8):11330–11337. doi: 10.1016/j.ceramint.2021.12.356
  • Singh B, Ishwarya G, Gupta M, et al. Geopolymer concrete: a review of some recent developments. Construction And Building Materials. 2015;85:78–90. doi: 10.1016/j.conbuildmat.2015.03.036
  • Lemougna PN, Wang K, Tang Q, et al. Recent developments on inorganic polymers synthesis and applications. Ceram Int. 2016;42(14):15142–15159. doi: 10.1016/j.ceramint.2016.07.027
  • Khale D, Chaudhary R. Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci. 2007;42(3):729–746. doi: 10.1007/s10853-006-0401-4
  • Liew YM, Heah CY, Mohd Mustafa AB. Structure and properties of clay-based geopolymer cements: a review. Mater Sci. 2016;83:595–629. doi: 10.1016/j.pmatsci.2016.08.002
  • Baia C, Colombo P. Processing, properties and applications of highly porous geopolymers: a review. Ceram Int. 2018;44(14):16103–16118. doi: 10.1016/j.ceramint.2018.05.219
  • Novais RM, Pullar RC, Labrincha JA. Geopolymer foams: an overview of recent advancements. Pro Mater Sci. 2020;109:100621. doi: 10.1016/j.pmatsci.2019.100621
  • Zhang Z, Provis JL, Reid A, et al. Constr. Build Mater. 2014;56:113–127. doi: 10.1016/j.conbuildmat.2014.01.081
  • Shao Z, Wang J, Jiang Y, et al. The performance of micropore-foamed geopolymers produced from industrial wastes. Constr Build Mater. 2021;304:124636. doi: 10.1016/j.conbuildmat.2021.124636
  • Ke X, Baki VA. Assessing the suitability of alkali-activated metakaolin geopolymer for thermochemical heat storage. Microporous Mesoporous Mater. 2021;325:111329. doi: 10.1016/j.micromeso.2021.111329
  • Han L, Wang X, Wu B, et al. In-situ synthesis of zeolite X in foam geopolymer as a CO2 adsorbent. J Clean Prod. 2022;372:133591. doi: 10.1016/j.jclepro.2022.133591
  • Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Chem. 1985;57(4):603–619. doi: 10.1351/pac198557040603
  • Shao N, Tang S, Li S, et al. Defective analcime/geopolymer composite membrane derived from fly ash for ultrafast and highly efficient filtration of organic pollutants. J Hazard Mater. 2020;388:121736. doi: 10.1016/j.jhazmat.2019.121736
  • Feng W, Lu X, Xiong J, et al. Solid–waste–derived geopolymer–type zeolite–like high functional catalytic materials catalyze efficient hydrogenation of levulinic acid. Catalysts. 2022;12(11):1361. doi: 10.3390/catal12111361
  • Barbosa TR, Foletto EL, Dotto GL, et al. Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions. Ceram Int. 2018;44(1):416–423. doi: 10.1016/j.ceramint.2017.09.193
  • Kriven WM, Bell JL, Gordon M. Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites. Ceram Trans. 1997;53:227–250.
  • Dong C, Zhou N, Zhang J, et al. Optimized preparation of gangue waste-based geopolymer adsorbent based on improved response surface methodology for Cd(II) removal from wastewater. Environ Res. 2023;221:115246. doi: 10.1016/j.envres.2023.115246
  • Upadhyay J, Misra SP, Irusta S, et al. Oxidation of aldehydes to carboxylic acids over geopolymer supported CuO. Mol Catal. 2023;536:112911. doi: 10.1016/j.mcat.2022.112911
  • Pei Y-R, Choi G, Asahina S, et al. A novel geopolymer route to porous carbon: high CO 2 adsorption capacity. Chem Comm. 2019;55(22):3266–3269. doi: 10.1039/C9CC00232D
  • Pei Y-R, Yang J-H, Choi G, et al. A geopolymer route to micro- and meso-porous carbon. RSC Adv. 2020;10(12):6814–6821. doi: 10.1039/C9RA09698A
  • Piao H, Rejinold NS, Choi G, et al. Niclosamide encapsulated in mesoporous silica and geopolymer: a potential oral formulation for COVID-19. Microporous Mesoporous Mater. 2021;326:111394. doi: 10.1016/j.micromeso.2021.111394
  • Lee YH, Jeong J, Kim K, et al. Microporous materials in scalable shapes: fiber sorbents. Chem Mater. 2020;32(17):7081–7104. doi: 10.1021/acs.chemmater.0c00183
  • Jelle BP, Gustavsen A, Baetens R. The path to the high performance thermal building insulation materials and solutions of tomorrow. J Build Phys. 2010;34(2):99–123. doi: 10.1177/1744259110372782
  • Popovich J, Chen S, Iannuzo N, et al. Synthesized geopolymers adsorb bacterial proteins, toxins, and cells. Front Bioeng Biotechnol. 2020;8:527. doi: 10.3389/fbioe.2020.00527
  • Abduljauwad SN, Habib T, Ahmed H-U-R. Nano-clays as potential pseudo-antibodies for COVID-19. Nanoscale Res Lett. 2020;15(1):173. doi: 10.1186/s11671-020-03403-z
  • Zhao H-Y, Gou X, Pei Y-R, et al. Chirality amplification over the morphology control of the rod-coil molecules with lateral methyl groups. Langmuir. 2023;39(25):8824–8832. doi: 10.1021/acs.langmuir.3c00864
  • Xu L, Guo M, Hung C-T, et al. Chiral skeletons of mesoporous silica nanospheres to mitigate Alzheimer’s β-Amyloid Aggregation. J Am Chem Soc. 2023;145(14):7810–7819. doi: 10.1021/jacs.2c12214
  • Wang J, Liu Y, Cai Q, et al. Hierarchically porous silica membrane as separator for high-performance lithium-ion batteries. Adv Mater. 2022;34(3):2107957. doi: 10.1002/adma.202107957