372
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of silver/zinc co-dopant on enhancing cytotoxicity and antibacterial property of spray pyrolyzed bioactive glasses

, , &
Pages 104-116 | Received 25 Jul 2023, Accepted 25 Jan 2024, Published online: 05 Feb 2024

References

  • Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia. 2010;6(8):2874–2888. doi: 10.1016/j.actbio.2010.02.012
  • Baino F, Fiorilli S, Vitale-Brovarone C. Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomaterialia. 2016;42:18–32. doi: 10.1016/j.actbio.2016.06.033
  • Izquierdo-Barba I, Vallet-Regí M. Mesoporous bioactive glasses: relevance of their porous structure compared to that of classical bioglasses. Biomedical Glasses. 2015;1(1). doi: 10.1515/bglass-2015-0014
  • Moghanian A, Firoozi S, Tahriri M, et al. RETRACTED: a comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. Mater Sci Eng C. 2018;91:349–360. doi: 10.1016/j.msec.2018.05.058
  • Capela M, Tobaldi D, Oliveira C, et al. Bioactivity and antibacterial activity against E-coli of calcium-phosphate-based glasses: effect of silver content and crystallinity. Ceram Int. 2017;43(16):13800–13809. doi: 10.1016/j.ceramint.2017.07.100
  • Gupta N, Santhiya D, Murugavel S, et al. Effects of transition metal ion dopants (ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass. Colloids Surf A Physicochem Eng Asp. 2018;538:393–403. doi: 10.1016/j.colsurfa.2017.11.023
  • Hu S, Chang J, Liu M, et al. Study on antibacterial effect of 45S5 bioglass®. J Mater Sci. 2009;20(1):281–286. doi: 10.1007/s10856-008-3564-5
  • Stankic S, Suman S, Haque F, et al. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol. 2016;14(1):1–20. doi: 10.1186/s12951-016-0225-6
  • Kargozar S, Mozafari M, Ghodrat S, et al. Copper-containing bioactive glasses and glass-ceramics: from tissue regeneration to cancer therapeutic strategies. Mater Sci Eng: C. 2020;121:111741. doi: 10.1016/j.msec.2020.111741
  • Moghanian A, Sedghi A, Ghorbanoghli A, et al. The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass. Ceram Int. 2018;44(8):9422–9432. doi: 10.1016/j.ceramint.2018.02.159
  • Fei Y-C, Chen L-G, Kuo C-K, et al. Influence of strontium dopant on bioactivity and osteoblast activity of spray pyrolyzed strontium-doped mesoporous bioactive glasses. J Asian Ceram Soc. 2021;9(1):221–228. doi: 10.1080/21870764.2020.1860437
  • Saatchi A, Arani AR, Moghanian A, et al. Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications. Ceram Int. 2021;47(1):260–271. doi: 10.1016/j.ceramint.2020.08.130
  • Moghanian A, Zohourfazeli M, Tajer MHM. The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass. J Non-Crystalline Solids. 2020;546:120262. doi: 10.1016/j.jnoncrysol.2020.120262
  • Sharifianjazi F, Parvin N, Tahriri M. Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses. Ceram Int. 2017;43(17):15214–15220. doi: 10.1016/j.ceramint.2017.08.056
  • Bai X, Liu W, Xu L, et al. Sequential macrophage transition facilitates endogenous bone regeneration induced by Zn-doped porous microcrystalline bioactive glass. J Mat Chem B. 2021;9(12):2885–2898. doi: 10.1039/D0TB02884C
  • El-Rashidy AA, Waly G, Gad A, et al. Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol-gel process and modified stöber method. J Non-Crystalline Solids. 2018;483:26–36. doi: 10.1016/j.jnoncrysol.2017.12.044
  • Sharifianjazi F, Parvin N, Tahriri M. Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses. J Non-Crystalline Solids. 2017;476:108–113. doi: 10.1016/j.jnoncrysol.2017.09.035
  • Neščáková Z, Zheng K, Liverani L, et al. Multifunctional zinc ion doped sol–gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioact Mater. 2019;4:312–321. doi: 10.1016/j.bioactmat.2019.10.002
  • Azizabadi N, Azar PA, Tehrani MS, et al. Synthesis and characteristics of gel-derived SiO2-CaO-P2O5-SrO-Ag2O-ZnO bioactive glass: bioactivity, biocompatibility, and antibacterial properties. J Non-Crystalline Solids. 2021;556:120568. doi: 10.1016/j.jnoncrysol.2020.120568
  • Baghbani F, Moztarzadeh F, Mozafari M, et al. Production and characterization of a Ag-and Zn-doped glass-ceramic material and in vitro evaluation of its biological effects. J Materi Eng Perform. 2016;25(8):3398–3408. doi: 10.1007/s11665-016-2156-7
  • Ben-Arfa BA, Pullar RC. A comparison of bioactive glass scaffolds fabricated‎ by Robocasting from powders made by sol–gel and melt-quenching methods. Processes. 2020;8(5):615. doi: 10.3390/pr8050615
  • Ji L, Qiao W, Huang K, et al. Synthesis of nanosized 58S bioactive glass particles by a three-dimensional ordered macroporous carbon template. Mater Sci Eng C. 2017;75:590–595. doi: 10.1016/j.msec.2017.02.107
  • Zheng K, Boccaccini AR. Sol-gel processing of bioactive glass nanoparticles: a review. Adv Colloid Interfac. 2017;249:363–373. doi: 10.1016/j.cis.2017.03.008
  • Ningsih HS, Liu Y-C, Chen J-W, et al. Effects of strontium dopants on the in vitro bioactivity and cytotoxicity of strontium-doped spray-dried bioactive glass microspheres. J Non-Crystalline Solids. 2022;576:121284. doi: 10.1016/j.jnoncrysol.2021.121284
  • Kuo C-K, Chen L-G, Tseng C-F, et al. Influences of acid catalysts on the microstructure, bioactivity and cytotoxicity of bioactive glass nanoparticles prepared by spray pyrolysis. J Non-Crystalline Solids. 2021;560:120710. doi: 10.1016/j.jnoncrysol.2021.120710
  • Lucas-Girot A, Mezahi FZ, Mami M, et al. Sol–gel synthesis of a new composition of bioactive glass in the quaternary system SiO2–CaO–Na2O–P2O5: comparison with melting method. J Non-Crystalline Solids. 2011;357(18):3322–3327. doi: 10.1016/j.jnoncrysol.2011.06.002
  • Sepulveda P, Jones J, Hench L. In vitro dissolution of melt‐derived 45S5 and sol‐gel derived 58S bioactive glasses. J Biomed Mater Res. 2002;61(2):301–311. doi: 10.1002/jbm.10207
  • Begum AN, Rajendran V, Ylänen H. Effect of thermal treatment on physical properties of bioactive glass. Materials Chemistry & Physics. 2006;96(2–3):409–417. doi: 10.1016/j.matchemphys.2005.07.031
  • Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomaterialia. 2013;9(1):4457–4486. doi: 10.1016/j.actbio.2012.08.023
  • Hong Z, Liu A, Chen L, et al. Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method. J Non-Crystalline Solids. 2009;355(6):368–372. doi: 10.1016/j.jnoncrysol.2008.12.003
  • Balamurugan A, Balossier G, Kannan S, et al. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomaterialia. 2007;3(2):255–262. doi: 10.1016/j.actbio.2006.09.005
  • Chen C-Y, Lyu Y-R, Su C-Y, et al. Characterization of spray pyrolyzed manganese oxide powders deposited by electrophoretic deposition technique. Surf Coat Technol. 2007;202(4–7):1277–1281. doi: 10.1016/j.surfcoat.2007.07.083
  • Messing G, Zhang S, Jayanthi G. Modeling of particle morphology and size. J Am Ceram Soc. 1993;76(11):2707. doi: 10.1111/j.1151-2916.1993.tb04007.x
  • Shih S-J, Chou Y-J, Chien I-C. One-step synthesis of bioactive glass by spray pyrolysis. J Nanopart Res. 2012;14(12):1–8. doi: 10.1007/s11051-012-1299-1
  • Tseng C-F, Fei Y-C, Chou Y-J. Investigation of in vitro bioactivity and antibacterial activity of manganese-doped spray pyrolyzed bioactive glasses. J Non-Crystalline Solids. 2020;549:120336. doi: 10.1016/j.jnoncrysol.2020.120336
  • Shih S-J, Tzeng W-L, Jatnika R, et al. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res, Part B. 2014;103(4):899–907. doi: 10.1002/jbm.b.33273
  • Brugger SD, Baumberger C, Jost M, et al. Automated counting of bacterial colony forming units on agar plates. PloS One. 2012;7(3):e33695. doi: 10.1371/journal.pone.0033695
  • Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W 3. J Biomed Mater Res. 1990;24(6):721–734. doi: 10.1002/jbm.820240607
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4
  • Zhou Y, Zan Y, Zheng S, et al. Distribution of the microalloying element Cu in B4C-reinforced 6061Al composites. J Alloys Compd. 2017;728:112–117. doi: 10.1016/j.jallcom.2017.08.273
  • Tseng H-C, Chen Y-W. Facile synthesis of Ag/TiO2 by photoreduction method and its degradation activity of methylene blue under UV and visible light irradiation. Mod Res Catal. 2019;9(1):1. doi: 10.4236/mrc.2020.91001
  • Akhtach S, Tabia Z, Bricha M, et al. Structural characterization, in vitro bioactivity, and antibacterial evaluation of low silver-doped bioactive glasses. Ceram Int. 2021;47(20):29036–29046. doi: 10.1016/j.ceramint.2021.07.066
  • Bogle K, Dhole S, Bhoraskar V. Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology. 2006;17(13):3204. doi: 10.1088/0957-4484/17/13/021
  • Zamiri R, Zakaria A, Husin MS, et al. Formation of silver microbelt structures by laser irradiation of silver nanoparticles in ethanol. Int J Nanomed. 2011;6:2221. doi: 10.2147/IJN.S23830
  • Shih S-J, Chien I-C. Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technol. 2013;237:436–441. doi: 10.1016/j.powtec.2012.12.032
  • Zimmermann R, Pfuch A, Horn K, et al. An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (CCVD) in an economic way. Plasma Process Polym. 2011;8(4):295–304. doi: 10.1002/ppap.201000113
  • Chou Y-J, Ningsih HS, Shih S-J. Preparation, characterization and investigation of antibacterial silver-zinc co-doped β-tricalcium phosphate by spray pyrolysis. Ceram Int. 2020;46(10):16708–16715. doi: 10.1016/j.ceramint.2020.03.245
  • Qian G, Zhang L, Liu X, et al. Silver-doped bioglass modified scaffolds: a sustained antibacterial efficacy. Mater Sci Eng C. 2021;129:112425. doi: 10.1016/j.msec.2021.112425
  • El-Kady AM, Ali AF, Rizk RA, et al. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int. 2012;38(1):177–188. doi: 10.1016/j.ceramint.2011.05.158
  • Luo SH, Xiao W, Wei XJ, et al. In vitro evaluation of cytotoxicity of silver‐containing borate bioactive glass. J Biomed Mater Res, Part B. 2010;95(2):441–448. doi: 10.1002/jbm.b.31735
  • Rahmani M, Moghanian A, Yazdi MS. The effect of ag substitution on physicochemical and biological properties of sol-gel derived 60% SiO2–31% CaO–4% P2O5–5% Li2O (mol%) quaternary bioactive glass. Ceram Int. 2021;47(11):15985–15994. doi: 10.1016/j.ceramint.2021.02.173
  • Shahrbabak MSN, Sharifianjazi F, Rahban D, et al. A comparative investigation on bioactivity and antibacterial properties of sol-gel derived 58S bioactive glass substituted by Ag and Zn. Silicon. 2019;11(6):2741–2751. doi: 10.1007/s12633-018-0063-2
  • Zhang D, Leppäranta O, Munukka E, et al. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res. 2010;93(2):475–483. doi: 10.1002/jbm.a.32564
  • Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother. 2002;46(6):1940–1945. doi: 10.1128/AAC.46.6.1940-1945.2002
  • Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50(1):753–789. doi: 10.1146/annurev.micro.50.1.753
  • Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668. doi: 10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3
  • Khodashenas B. The influential factors on antibacterial behaviour of copper and silver nanoparticles. Indian Chem Eng. 2016;58(3):224–239. doi: 10.1080/00194506.2015.1026950
  • Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V, et al. Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin, 3 biotech. 3 Biotech. 2011;1(3):173–186. doi: 10.1007/s13205-011-0021-9
  • Nath S, Kalmodia S, Basu B. Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites. J Mater Sci Mater Med. 2009;21(4):1273–1287. doi: 10.1007/s10856-009-3939-2
  • Wu J, Wang L, He J, et al. In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells. Contraception. 2012;85(5):509–518. doi: 10.1016/j.contraception.2011.09.016
  • Lok C-N, Ho C-M, Chen R, et al. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007;12(4):527–534. doi: 10.1007/s00775-007-0208-z
  • Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44(14):5649–5654. doi: 10.1021/es101072s
  • Sotiriou GA, Teleki A, Camenzind A, et al. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chem Eng J. 2011;170(2–3):547–554. doi: 10.1016/j.cej.2011.01.099
  • Phetnin R, Rattanachan ST. Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. J Sol Gel Sci Techn. 2015;75(2):279–290. doi: 10.1007/s10971-015-3697-1
  • Ahamed M, Karns M, Goodson M, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008;233(3):404–410. doi: 10.1016/j.taap.2008.09.015