353
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Correlation between phase, microstructure and electrical properties of Ba0.7Sr0.3TiO3-modified Bi0.5Na0.5TiO3-0.06BaTiO3 lead free ceramics

ORCID Icon, , , , & ORCID Icon
Pages 117-128 | Received 06 Nov 2023, Accepted 31 Jan 2024, Published online: 08 Feb 2024

References

  • Moulson AJ, Herbert JM. Electroceramics: Materials Properties Applications. New York: Chapman and Hall Press; 1990. doi: 10.1002/0470867965
  • Saito Y, Takao H, Tani T, et al. Lead free piezoelectric. Nature. 2004;432(7013):84–87. doi: 10.1038/nature03028
  • Goel M. Recent developments in electroceramics: MEMS applications for energy and environment. Ceram Int. 2004;30(7):147–1154. doi: 10.1016/j.ceramint.2003.12.012
  • Camargo J, Osinaga S, Febbo M, et al. Piezoelectric and structural properties of bismuth sodium potassium titanate lead-free ceramics for energy harvesting. J Mater Sci Mater Electron. 2021;32(14):19117–19125. doi: 10.1007/s10854-021-06430-3
  • Wei HG, Wang H, Xia YJ, et al. An overview of lead-free piezoelectric materials and devices. J Mater Chem C. 2018;6(46):12446–67. doi: 10.1039/C8TC04515A
  • Gao JH, Xue DZ, Liu WF, et al. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators. 2017;6(3):24. doi: 10.3390/act6030024
  • Zheng T, Zhang Y, Ke Q, et al. High-performance potassium sodium niobate piezoceramics for ultrasonic transducer. Nano Energy. 2020;70:104559. doi: 10.1016/j.nanoen.2020.104559
  • Zang S, Xia R, Shrout TR. Leed free piezoelectric ceramics vs PZT. J Electroceram. 2007;19(4):251–257. doi: 10.1007/s10832-007-9056-z
  • Panda PK. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci. 2009;44(19):5049–5062. doi: 10.1007/s10853-009-3643-0
  • Rodel J, Webber KG, Dittmer R, et al. Transferring lead-free-piezoelectric ceramics into application. J Eur Ceram Soc. 2015;35(6):1659–1681. doi: 10.1016/j.jeurceramsoc.2014.12.013
  • Li W, Xu ZJ, Chu RQ, et al. Piezoelectric and Dielectric Properties of (Ba 1− x Ca x)(Ti 0.95 Zr 0.05)O 3 Lead-Free Ceramics. J Am Ceram Soc. 2010;93(10):2942–2944. doi: 10.1111/j.1551-2916.2010.03907.x
  • Yoon MS, Khansur NH, Choi BK, et al. The effect of nano-sized BNBT on microstructure and dielectric/piezoelectric properties. Ceram Int. 2009;35(8):3027–3036. doi: 10.1016/j.ceramint.2009.04.016
  • Wang K, Hussain A, Jo W, et al. Temperature-dependent properties of (Bi 1/2 Na 1/2) TiO 3 –(Bi 1/2 K 1/2) TiO 3 – SrTiO 3 Lead-Free Piezoceramics. J Am Ceram Soc. 2012;95(7):2241–2247. doi: 10.1111/j.1551-2916.2012.05162.x
  • Lee KT, Park JS, Cho HJ, et al. Phase transition and electrical characteristics of Bi0.5(Na0.78K0.22)0.5TiO3–BiFeO3 lead-free piezoelectric ceramics. Ceram Int. 2015;41(8):10298–10303. doi: 10.1016/j.ceramint.2015.04.063
  • Jaita P, Watcharapasorn A, Kumar N, et al. Lead- free (Ba0.70Sr0.30)TiO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 ceramics with large electric fied-induced strain. J Am Ceram Soc. 2016;99:1615–1624. doi: 10.1111/jace.14136
  • Wannasut P, Jaita P, Watcharapasorn A, et al. Microstructure and electrical properties of (1-x)Bi0.5(Na0.80K0.20)0.5TiO3-xLiNbO3 lead-free piezoelectric ceramics. IEEE Conference Proceedings and Special Issue in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control; Singapore. 2015. p. 167–170.
  • Bai W, Lui F, Li P, et al. Structure and electromechanical properties in Bi0.5Na0.5TiO3-based lead-free piezoceramics with calculated end-member Bi(Ni0.5Ti0.5)O3. J Eur Ceram Soc. 2015;35(13):3457–3466. doi: 10.1016/j.jeurceramsoc.2015.05.001
  • Liu F, Wahyudi O, Li Y, et al. A new Bi0.5Na0.5TiO3 based lead-free piezoelectric system with calculated end-member Bi(Zn0.5Hf0.5)O3. Appl Phys. 2014;115(11):114101. doi: 10.1063/1.4868583
  • Wang Q, Chen J, Fan L, et al. Preparation and electric properties of Bi0.5Na0.5TiO3-Bi(Mg0.5Ti0.5)O3 lead-free piezoceramics. J Am Ceram Soc. 2013;96:1171–1175. doi: 10.1111/jace.12147
  • Zhao W, Ya J, Xin Y, et al. Fabrication of Na 0.5 Bi 0.5 TiO 3 –BaTiO 3 -textured ceramics templated by plate-like Na 0.5 Bi 0.5 TiO 3 particles. J Am Ceram Soc. 2009;92(7):1607. doi: 10.1111/j.1551-2916.2009.03043.x
  • Yan YK, Zhou HP, Zhao W, et al. Fabrication and electrical properties of textured Na1/2Bi1/2TiO3-BaTiO3 ceramics by reactive-templated grain growth. J Electroceram. 2008;21(1–4):246. doi: 10.1007/s10832-007-9140-4
  • Zhang QH, Zhang YY, Wang FF, et al. Growth and electric properties of 0.96Na0.5Bi0.5TiO3–0.04BaTiO3 single crystal. J Cryst Growth. 2010;312(3):457. doi: 10.1016/j.jcrysgro.2009.11.006
  • Zhang QH, Zhang YY, Wang FF, et al. Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0.5Bi0.5TiO3–BaTiO3 single crystals. Appl Phys Lett. 2009;95(10):102904. doi: 10.1063/1.3222942
  • Ben WVE, Damjanovic D, Klein N, et al. Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys Rev B. 2010;82(10):104112–104117. doi: 10.1103/PhysRevB.82.104112
  • Machado R, Ochoa DA, Santos VBD, et al. High stability of properties in morphotropic phase boundary Bi0.5Na0.5TiO3-BaTiO3 piezoceramics. Mater Lett. 2016;183:73–76. doi: 10.1016/j.matlet.2016.07.045
  • Supriya S. Synthesis mechanisms and effects of BaTiO3 doping on the optical. J Solid State Chem. 2022;308:122940. doi:10.1016/j.jssc.2022.122940
  • Supriya S. A review on lead-free-Bi0.5Na0.5TiO3 based ceramics and films: dielectric, piezoelectric, ferroelectric and energy storage performance. J Inorg Organomet Polym. 2022;32(10):3659–3676. doi: 10.1007/s10904-022-02418-6
  • Supriya S. Highly tunable multifunctional rare earth based Bi0.5-xCexNa0.5TiO3 perovskites via site selective doping engineering. Mater Chem Phys. 2022;287:126233. doi: 10.1016/j.matchemphys.2022.126233
  • Supriya S. A critical review on crystal structure mechanisms, microstructural and electrical performances of Bi0.5Na0.5TiO3—SrTiO3 perovskites. J Electroceramics. 2022;49(2):94–108. doi: 10.1007/s10832-022-00295-6
  • Ren X, Yin H, Tang Y, et al. The large electro-strain in BNKT-BST-100xTa lead-free ceramics. Ceram Int. 2020;46(2):1876–1882. doi: 10.1016/j.ceramint.2019.09.164
  • Cheng BL, Su B, Holmes JE, et al. Dielectric and mechanical losses in (Ba,Sr)TiO3 systems. J Electroceram. 2002;9(1):17–23. doi: 10.1023/A:1021633917071
  • Ren X, Fan H, Zhao Y, et al. Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl Mater Interfaces. 2016;8(39):26190–26197. doi: 10.1021/acsami.6b04497
  • Deol RS, Batra N, Rai P, et al. A lead-free flexible energy harvesting device microsyst. Microsyst Technol. 2022;28(9):2061–2070. doi: 10.1007/s00542-022-05345-1
  • Alam MM, SK G, Sultana A, et al. Lead-free ZnSnO 3 /MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation. Nanotechnology. 2015;26(16):165403. doi: 10.1088/0957-4484/26/16/165403
  • Yan M, Liu S, Xu Q, et al. Enhanced energy harvesting performance in lead-free multi-layer piezoelectric composites with a highly aligned pore structure. Nano Energy. 2023;106:108096. doi: 10.1016/j.nanoen.2022.108096
  • Rout D, Moon KS, Kang SJL, et al. Dielectric and Raman scattering studies of phase transitions in the (100−x)Na0.5Bi0.5TiO3–xSrtio3 system. J Appl Phys. 2010;108(8):084102. doi: 10.1063/1.3490781
  • Rai R, Coondoo I, Lopes RP, et al. Development of lead-free materials for piezoelectric energy harvesting. Mater Res Soc Symp Proc. 2011;1325:105–110. doi: 10.1557/opl.2011.847
  • Ye J, Ding G, Wu X, et al. Development and performance research of PSN-PZT piezoelectric ceramics based on road vibration energy harvesting technology. Mater Today Commun. 2023;34:105135. doi: 10.1016/j.mtcomm.2022.105135
  • Song J, Qi L, Wang Y. A dual-function system integrating kinetic energy harvesting and passenger sensing for urban subway. Int J Hydrogen Energy. 2023;48(100):40053–40070. In Press. doi: 10.1016/j.ijhydene.2023.09.172
  • Wang X. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy. 2012;1(1):13–24. doi: 10.1016/j.nanoen.2011.09.001
  • Rani GM, Wu CM, Motora KG. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy. 2023;108:108211. doi: 10.1016/j.nanoen.2023.108211
  • Rani GM, Wu CM, Motora KG. Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J Clean Prod. 2022;363:132532. doi: 10.1016/j.jclepro.2022.132532
  • Wang S, Wang C, Yu G, et al. Development and performance of a piezoelectric energy conversion structure applied in pavement. Energy Convers Manag. 2020;207:112571. doi: 10.1016/j.enconman.2020.112571
  • Jaita P, Manotham S, Rujijanagul G. Influence of Al2O3 nanoparticle doping on depolarization temperature, and electrical and energy harvesting properties of lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 ceramics. RSC Adv. 2020;10(53):32078–32087. doi: 10.1039/D0RA04866F
  • Yao FZ, Yu Q, Wang K, et al. Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. RSC Adv. 2014;4(39):20062–20068. doi: 10.1039/C4RA01697A
  • Coondoo I, Panwar N, Amorın H, et al. Enhanced piezoelectric properties of praseodymium-modified lead-free (Ba 0.85 Ca 0.15)(ti 0.90 Zr 0.10)O 3 ceramics. J Am Ceram Soc. 2015;98(10):3127–3135. doi: 10.1111/jace.13713
  • Ngo NCT, Sugiyama H, Sodige BAK, et al. Enhancing low-temperature energy harvesting by lead-free ferroelectric Ba(Zr0.1Ti0.9)O3. J Asian Ceram Soc. 2023;106(1):201–212. doi: 10.1111/jace.18663
  • Bijalwan V, Erhart J, Spotz Z, et al. Composition driven (Ba,Ca)(Zr,Ti)O3 lead-free ceramics with large quality factor and energy harvesting characteristics. J Am Ceram Soc. 2021;104(2):1088–1101. doi: 10.1111/jace.17497
  • Jaita P, Saenkamad K, Rujijanagul G. Improvements in piezoelectric and energy harvesting properties with a slight change in depolarization temperature in modified BNKT ceramics by a simple technique. RSC Adv. 2023;13(6):3743. doi: 10.1039/D2RA07587C
  • Wannasut P, Jaiban P, Jaita P, et al. Improvement of electrical and energy harvesting properties of new lead-free BST modified 0.995BNKT-0.005LN ceramics. J Asian Ceram Soc. 2023;11(1):88–97. doi: 10.1080/21870764.2022.2156668
  • Powder Diffraction File No. 00-036-0340. Newton Square, PA: International Centre for Diffraction Data; 2000.
  • Powder Diffraction File No. 00-005-0626. Newton Square, PA: International Centre for Diffraction Data; 2000.
  • Powder Diffraction File No. 01-089-0274. Newton Square, PA: International Centre for Diffraction Data;, 2000.
  • Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramic. Jpn J Appl Phys. 1991;30:2236–2239. doi: 10.1143/JJAP.30.2236
  • Chandrasekhar M, Kumar P. Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications. Ceram Int. 2015;4(4):5574–5580. doi: 10.1016/j.ceramint.2014.12.136
  • Jaita P, Watcharapasorn A, Cann DP. Dielectric, ferroelectric and electric field-induced strain behavior of Ba(Ti0.90Sn0.10)O3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoelectrics. J Alloys Compd. 2014;596:98–106. doi: 10.1016/j.jallcom.2014.01.183
  • Supriya S. Crystal structure engineered non-toxic Bi0.5Na0.5TiO3 based thin films- fabrication process, enhanced electrical performance, challenges and recent reports. J Inorg Organomet Polym. 2023;33(10):3013–3026. doi: 10.1007/s10904-023-02765-y
  • Chen ZW, Hu JQ. Piezoelectric and dielectric properties of Bi 0 ˙ 5 (Na 0 ˙ 84 K 0 ˙ 16) 0 ˙ 5 TiO 3 –Ba(Zr 0 ˙ 04 Ti 0 ˙ 96)O 3 lead free piezoelectric ceramics. Adv Appl Ceram. 2008;107(4):222–226. doi: 10.1179/174367608X263403
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32(5):751–767. doi: 10.1107/S0567739476001551
  • Rafique R, Tonny KN, Sharmin A, et al. Study on the effect of varying film thickness on the transparent conductive nature of aluminum doped zinc oxide deposited by dip coating. Mater Focus. 2018;7(5):1–7. doi: 10.1166/mat.2018.1572
  • Markevich N, Gertner I. Comparison among methods for calculating FWHM. Nucl Instrum Methods Phys Res A. 1989;283(1):72–77. doi: 10.1016/0168-9002(89)91258-8
  • Cullity BD. Elements of X-ray diffraction. Philippines: Addison-Wesley Publishing; 1978.
  • Hosseinmardi A, Shojaee N, Rad MK, et al. A study on the photoluminescence properties of electrospray deposited amorphous and crystalline nanostructured ZnO thin films. Ceram Int. 2012;38(3):1975–1980. doi: 10.1016/j.ceramint.2011.10.031
  • Lee MJ, Lee TI, Lim J, et al. Effect of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of ga-doped ZnO films, electron. Mater Lett. 2009;5(3):127–133. doi: 10.3365/eml.2009.09.127
  • Lele S, Anantharaman TR. Influence of crystallite shape on particle size broadening of debye-scherrer reflections. Proc Indian Acad Sci. 1966;64(5):261–274. doi: 10.1007/BF03047543
  • Zaier A, Meftah A, Jaber AY, et al. Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique. J King Saud Univ Sci. 2015;27(4):356–360. doi: 10.1016/j.jksus.2015.04.007
  • Co ND, Cuong LV, Tu BD, et al. Effect of crystallization temperature on energy-storage density and efficiency of lead-free Bi0.5(Na0.8K0.2)0.5TiO3 thin films prepared by sol–gel method. J Sci Adv Mater Devices. 2019;4(3):370–375. doi: 10.1016/j.jsamd.2019.04.008
  • Gahtar A, Benali A, Benramache S, et al. Effect of annealing time on the structural, morphological, optical and electrical properties of NiS thin films. Chalcogenide Lett. 2022;19(2):103–116. doi: 10.15251/CL.2022.192.103
  • Razak KA, Yip CJ, Sreekantan S. Synthesis of (Bi0.5Na0.5)TiO3 (BNT) and pr doped BNT using the soft combustion technique and its properties. J Alloys Compd. 2011;509(6):2936–2941. doi: 10.1016/j.jallcom.2010.11.163
  • Bokuniaeva AO, Vorokh AS. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J Phys Conf Ser. 2019;1410(1):012057. doi: 10.1088/1742-6596/1410/1/012057
  • Badapanda T, Sahoo S, Nayak P. Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conf Ser Mater Sci Eng. 2017;178:012032. doi: 10.1088/1757-899X/178/1/012032
  • Difeo M, Osinaga S, Febbo M, et al. Influence of the (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramic geometries on the power generation of energy harvesting devices. Ceram Int. 2021;47(8):10696–10704. doi: 10.1016/j.ceramint.2020.12.184
  • Prasertpalichat S, Siritanon T, Nuntawong N, et al. Structural characterization of A-site nonstoichiometric (1 − x)Bi0.5Na0.5TiO3–xBatio3 ceramics. J Mater Sci. 2019;54(2):1162–1170. doi: 10.1007/s10853-018-2939-3
  • Wang J, Zhou C, Li Q, et al. Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics. J Mater Sci. 2018;53(12):8844–8854. doi: 10.1007/s10853-018-2186-7
  • Chen PY, Chen CS, Tu CS. Effects of texture on microstructure, raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics. J Eur Ceram. 2016;36(7):1613–1622. doi: 10.1016/j.jeurceramsoc.2016.01.038
  • Nesterović A, Vukmirović J, Stijepović I, et al. Structure and dielectric properties of (1-x)Bi0.5Na0.5TiO3–xBaTiO3 piezoceramics prepared using hydrothermally synthesized powders. R Soc Open Sci. 2021;8(7):202365. doi: 10.1098/rsos.202365
  • Selvamani R, Singh G, Sathe V, et al. Dielectric, structural and Raman studies on (Na 0.5 Bi 0.5 TiO 3) (1 − x) (BiCrO 3) x ceramic. J Phys Condens Matter. 2011;23(5):055901. doi: 10.1088/0953-8984/23/5/055901
  • Jaita P, Jarupoom P. Enhanced electric field-induced strain and electrostrictive response of lead-free BaTiO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 piezoelectric ceramics. J Asian Ceram Soc. 2021;9(3):975–987. doi: 10.1080/21870764.2021.1930953
  • Chaisan W, Yimnirun R, Ananta S. Two-stage sintering of barium titanate ceramics and resulting characteristics. Ferroelectrics. 2007;346(1):84–92. doi: 10.1080/00150190601180380
  • Khamman O, Watcharapasorn A, Pengpat K. Fin grained bismuth sodium titanate ceramics prepared via vibro-milling method. J Mater Sci. 2006;41(16):5391–5394. doi: 10.1007/s10853-006-0405-0
  • Chen IW, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 2000;404(6774):168–171. doi: 10.1038/35004548
  • Rai R, Coondoo I, Rani R. Impedance spectroscopy and piezoresponse force microscopy analysis of lead-free (1 − x) K0.5Na0.5NbO3 − xLiNbO3 ceramics. Curr Appl Phys. 2013;13(2):430–440. doi: 10.1016/j.cap.2012.09.009
  • Chiang YM, Birnie DP, WD K. Physical ceramics: principles for ceramics science and engineering. New York: John Wiley & Sons, Inc; 1997.
  • Pham KN, Lee HB, Han HS, et al. Dielectric, ferroelectric, and piezoelectric properties of Nb-substituted Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. Phys Soc. 2012;60:207–211. doi: 10.3938/jkps.60.207
  • Hussain A, Zamman A, Iqbal Y. Dielectric, ferroelectric and field induced strain properties of Nb-modified Pb-free 0.99Bi0.5(Na0.82K0.18)TiO3-0.01LiSbO3 ceramics. J Alloy Compd. 2013;574:320–324. doi: 10.1016/j.jallcom.2013.05.140
  • Supriya S. Research progress, doping strategies and dielectric-ferroelectric anomalies of rare earth-based Bi0.5Na0.5TiO3 perovskites. J Rare Earths. 2023. doi: 10.1016/j.jre.2023.10.009
  • Xu B, Paillard C, Dkhil B, et al. Pinched hysteresis loop in defect-free ferroelectric materials. Phys Rev B. 2016;94(14):140101(R. doi: 10.1103/PhysRevB.94.140101
  • Zuo R, Ye C, Fang X, et al. Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J Eur Ceram. 2008;28(4):871–877. doi: 10.1016/j.jeurceramsoc.2007.08.011
  • Hao J, Shen B, Zhai J, et al. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. J Appl Phys. 2013;113(11):114106. doi: 10.1063/1.4795511
  • Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc. 1999;82(4):797–818. doi: 10.1111/j.1151-2916.1999.tb01840.x
  • Sun Y, Chang Y, Wu J, et al. Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites. J Mater Chem A. 2019;7(8):3603–3611. doi: 10.1039/C8TA10312G
  • De U, Sahu KR, De A. Ferroelectric materials for high temperature piezoelectric applications. Solid State Phenom. 2015;232:235–278. doi: 10.4028/www.scientific.net/SSP.232.235
  • Leng H, Wang Y, Yan Y, et al. Water quenched and acceptor-doped textured piezoelectric ceramics for off-resonance and on-resonance devices. Small. 2023;19(1):2204454. doi: 10.1002/smll.202204454
  • Shin DJ, Kang WS, Koh JH, et al. Comparative study between the pillar‐ and bulk‐type multilayer structures for piezoelectric energy harvesters. Phys Status Solidi A. 2014;211(8):1812–1817. doi: 10.1002/pssa.201330505
  • Choi YJ, Yoo MJ, Kang HW, et al. Dielectric and piezoelectric properties of ceramic-polymer composites with 0–3 connectivity type. J Electroceram. 2013;30(1–2):30–35. doi: 10.1007/s10832-012-9706-7
  • Mahmud I, Ur SC, Man SY. Effects of Fe2O3 addition on the piezoelectric and the dielectric properties of 0.99Pb(Zr0.53Ti0.47)O3-0.01Bi(Y1-xFex)O3 ceramics for energy-harvesting devices. J Korean Phys Soc. 2014;65(2):133–144. doi: 10.3938/jkps.65.133
  • Kwon YH, Shin DJ, Koh JH. (1 − x)(Bi,Na)TiO3−x (Ba,Sr)TiO3 lead-free piezoelectric ceramics for piezoelectric energy harvesting. J Korean Phys Soc. 2015;66(7):1067–1071. doi: 10.3938/jkps.66.1067
  • Gowdhaman P, Annamalai V, Thakur OP. Piezo, ferro and dielectric properties of ceramic-polymer composites of 0-3 connectivity. Ferroelectrics. 2016;493(1):120–129. doi: 10.1080/00150193.2016.1134028