4,212
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Genetic, biological and epidemiological study on a cluster of H9N2 avian influenza virus infections among chickens, a pet cat, and humans at a backyard farm in Guangxi, China

ORCID Icon, , , , , , , , , , ORCID Icon, , & ORCID Icon show all
Article: 2143282 | Received 08 May 2022, Accepted 30 Oct 2022, Published online: 18 Dec 2022

References

  • Bi YH, Li J, Li SQ, et al. Dominant subtype switch in avian influenza viruses during 2016–2019 in China. Nat Commun. 2020;11(1):5909. doi:10.1038/s41467-020-19671-3
  • Bi YH, Chen QJ, Wang QL, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe. 2016;20(6):810–821. doi:10.1016/j.chom.2016.10.022
  • Xu KM, Li KS, Smith GJ, et al. Evolution and molecular epidemiology of H9N 2 influenza A viruses from quail in southern China, 2000 to 2005. J Virol. 2007;81(6):2635–2645. doi:10.1128/JVI.02316-06
  • Peacock TP, James J, Sealy JE, et al. A global perspective on H9N2 avian influenza virus. Viruses. 2019;11(7):620. doi:10.3390/v11070620
  • Bi YH, Li J, Shi WF. The time is now: a call to contain H9N2 avian influenza viruses. Lancet Microbe. 2022;3(11):e804–e805. doi:10.1016/S2666-5247(22)00232-4
  • Yang J, Müller NF, Bouckaert R, et al. Bayesian phylodynamics of avian influenza A virus H9N2 in Asia with time-dependent predictors of migration. PLoS Comput Biol. 2019;15(8):e1007189. doi:10.1371/journal.pcbi.1007189
  • Yang J, Xie D, Nie Z, et al. Inferring host roles in Bayesian phylodynamics of global avian influenza A virus H9N2. Virology. 2019;538:86–96. doi:10.1016/j.virol.2019.09.011
  • Li XY, Shi JZ, Guo J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog. 2014;10(11):e1004508. doi:10.1371/journal.ppat.1004508
  • Sun YP, Liu JH. H9N2 influenza virus in China: a cause of concern. Protein Cell. 2015;6(1):18–25. doi:10.1007/s13238-014-0111-7
  • Peiris M, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet. 1999;354(9182):916–917. doi:10.1016/s0140-6736(99)03311-5
  • Cheng VC, Chan JF, Wen X, et al. Infection of immunocompromised patients by avian H9N2 influenza A virus. J Infect. 2011;62(5):394–399. doi:10.1016/j.jinf.2011.02.007
  • Guo YJ, Li JG, Cheng XF, et al. Discovery of human infected by avian influenza A(H9N2) virus. Chinese J. Exp. Clin. Virol. 1999;13(2):105–108. (in Chinese).
  • Potdar V, Hinge D, Satav A, et al. Laboratory-confirmed avian influenza A(H9N2) virus infection, India, 2019. Emerg Infect Dis. 2019;25(12):2328–2330. doi:10.3201/eid2512.190636
  • Almayahi ZK, Kindi HA, Davies CT, et al. First report of human infection with avian influenza A(H9N2) virus in Oman: The need for a one health approach. Int J Infect Dis. 2020;91:169–173. doi:10.1016/j.ijid.2019.11.020
  • Huang R, Wang AR, Liu ZH, et al. Seroprevalence of avian influenza H9N2 among poultry workers in Shandong Province, China. Eur J Clin Microbiol Infect Dis. 2013;32(10):1347–1351. doi:10.1007/s10096-013-1888-7
  • Quan CS, Wang QL, Zhang J, et al. Avian influenza A viruses among occupationally exposed populations, China, 2014–2016. Emerg Infect Dis. 2019;25(12):2215–2225. doi:10.3201/eid2512.190261
  • Ma C, Lam TT, Chai YJ, et al. Emergence and evolution of H10 subtype influenza viruses in poultry in China. J Virol. 2015;89(7):3534–3541. doi:10.1128/JVI.03167-14
  • Chen HY, Yuan H, Gao RB, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet. 2014;383(9918):714–721. doi:10.1016/S0140-6736(14)60111-2
  • Wang Y, Niu SW, Zhang B, et al. The whole genome analysis for the first human infection with H10N3 influenza virus in China. J Infect. 2021:S0163–4453(21)00318-2. doi:10.1016/j.jinf.2021.06.021
  • Zhu WF, Dong J, Zhang Y, et al. A gene constellation in avian influenza A (H7N9) viruses may have facilitated the fifth wave outbreak in China. Cell Rep. 2018;23(3):909–917. doi:10.1016/j.celrep.2018.03.081
  • Quan CS, Shi WF, Yang Y, et al. New threats from H7N9 influenza virus: spread and evolution of high- and low-pathogenicity variants with high genomic diversity in wave five. J Virol. 2018;92(11):e00301–18. doi:10.1128/JVI.00301-18
  • Yang L, Zhu WF, Li XY, et al. Genesis and spread of newly emerged highly pathogenic H7N9 avian viruses in mainland China. J Virol. 2017;91(23):e01277–17. doi:10.1128/JVI.01277-17
  • Li RQ, Yu C, Li YR, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–1967. doi:10.1093/bioinformatics/btp336
  • Bao YM, Bao Y, Bolotov P, et al. The influenza virus resource at the national center for biotechnology information. J Virol. 2008;82(2):596–601. doi:10.1128/JVI.02005-07
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi:10.1093/bioinformatics/btp324
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352
  • Trombetta CM, Ulivieri C, Cox RJ, et al. Impact of erythrocyte species on assays for influenza serology. J Prev Med Hyg. 2018;59(1):E1–E7. doi:10.15167/2421-4248/jpmh2018.59.1.870
  • World Health Organization (WHO). Manual for the laboratory diagnosis and virological surveillance of influenza. 2011. https://www.who.int/publications/i/item/manual-for-the-laboratory-diagnosis-and-virological-surveillance-of-influenza
  • Gomaa MR, Kayed AS, Elabd MA, et al. Avian influenza A(H5N1) and A(H9N2) seroprevalence and risk factors for infection among Egyptians: a prospective, controlled seroepidemiological study. J Infect Dis. 2015;211(9):1399–1407. doi:10.1093/infdis/jiu529
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi:10.1093/nar/gky427
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. doi:10.1016/0263-7855(96)00018-5
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi:10.1093/molbev/mst010
  • Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–1534. doi:10.1093/molbev/msaa015
  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi:10.1093/bioinformatics/btu033
  • Matsuoka Y, Swayne DE, Thomas C, et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J Virol. 2009;83(9):4704–4708. doi:10.1128/JVI.01987-08
  • Zhou H, Yu Z, Hu Y, et al. The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus. PLoS One. 2009;4(7):e6277. doi:10.1371/journal.pone.0006277
  • Cauldwell AV, Long JS, Moncorgé O, et al. Viral determinants of influenza A virus host range. J Gen Virol. 2014;95(Pt 6):1193–1210. doi:10.1099/vir.0.062836-0
  • Subbarao EK, London W, Murphy BR. A single amino-acid in the PB2-gene of influenza A virus is a determinant of host range. J Virol. 1993;67(4):1761–1764. doi:10.1128/jvi.67.4.1761-1764.1993
  • Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293(5536):1840–1842. doi:10.1126/science.1062882
  • Yamada S, Hatta M, Staker BL, et al. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog. 2010;6(8):e1001034. doi:10.1371/journal.ppat.1001034
  • Zhou B, Pearce MB, Li Y, et al. Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS One. 2013;8(6):e67616. doi:10.1371/journal.pone.0067616
  • Mok CK, Yen HL, Yu MY, et al. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis. J Virol. 2011;85(18):9641–9645. doi:10.1128/JVI.00702-11
  • Xiao C, Ma W, Sun N, et al. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci Rep. 2016;6:19474. doi:10.1038/srep19474
  • Omoto S, Speranzini V, Hashimoto T, et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci Rep. 2018;8(1):9633. doi:10.1038/s41598-018-27890-4
  • Wang J, Wu YB, Ma CL, et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc Natl Acad Sci U S A. 2013;110(4):1315–1320. doi:10.1073/pnas.1216526110
  • Uyeki TM, Chong YH, Katz JM, et al. Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerg Infect Dis. 2002;8(2):154–159. doi:10.3201/eid0802.010148
  • Jiang WM, Liu S, Hou GY, et al. Chinese and global distribution of H9 subtype avian influenza viruses. PLoS One. 2012;7(12):e52671. doi:10.1371/journal.pone.0052671
  • Hirst GK. Adsorption of influenza virus on cells of the respiratory tract. J Exp Med. 1943;78(2):99–109. doi:10.1084/jem.78.2.99
  • Jawetz E. Hemagglutination by viruses; its biological implications. Calif Med. 1948;69(6):435–438.
  • Shi Y, Wu Y, Zhang W, et al. Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol. 2014;12(12):822–831. doi:10.1038/nrmicro3362
  • Watowich SJ, Skehel JJ, Wiley DC. Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. Structure. 1994;2(8):719–731. doi:10.1016/S0969-2126(00)00073-3
  • Butt KM, Smith GJ, Chen H, et al. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol. 2005;43(11):5760–5767. doi:10.1128/JCM.43.11.5760-5767.2005
  • Li X, Tian B, Zhou JF, et al. A comprehensive retrospective study of the seroprevalence of H9N2 avian influenza viruses in occupationally exposed populations in China. PLoS One. 2017;12(6):e0178328. doi:10.1371/journal.pone.0178328
  • Wang M, Fu CX, Zheng BJ. Antibodies against H5 and H9 avian influenza among poultry workers in China. N Engl J Med. 2009;360(24):2583–2584. doi:10.1056/NEJMc0900358
  • Ma CN, Cui SJ, Sun Y, et al. Avian influenza A (H9N2) virus infections among poultry workers, swine workers, and the general population in Beijing, China, 2013-2016: A serological cohort study. Influenza Other Respir Viruses. 2019;13(4):415–425. doi:10.1111/irv.12641