4,570
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection

, , , , , , , , , , , , , , , , & show all
Article: 2164217 | Received 06 Sep 2022, Accepted 28 Dec 2022, Published online: 17 Jan 2023

References

  • Postel A, Nishi T, Kameyama KI, et al. Reemergence of classical swine fever, Japan, 2018. Emerg Infect Dis. 2019 Jun;25(6):1228–1231.
  • Shimizu Y, Hayama Y, Murato Y, et al. Epidemiology of classical swine fever in Japan-A descriptive analysis of the outbreaks in 2018-2019. Front Vet Sci. 2020 Sep 22;7(573480).
  • Sawai K, Nishi T, Fukai K, et al. Phylogenetic and phylodynamic analysis of a classical swine fever virus outbreak in Japan (2018-2020). Transbound Emerg Dis. 2022 May;69(3):1529–1538.
  • EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Alvarez J, et al. Assessment of the control measures of the category A diseases of animal health Law: classical swine fever. EFSA J. 2021 Jul 21;19(7):e06707.
  • Meuwissen MP, Horst SH, Huirne RB, et al. A model to estimate the financial consequences of classical swine fever outbreaks: principles and outcomes. Prev Vet Med. 1999 Dec 1;42(3–4):249–270.
  • Saatkamp HW, Berentsen PB, Horst HS. Economic aspects of the control of classical swine fever outbreaks in the European union. Vet Microbiol. 2000 Apr 13;73(2–3):221–237.
  • Fernández-Carrión E, Ivorra B, Martínez-López B, et al. Implementation and validation of an economic module in the Be-FAST model to predict costs generated by livestock disease epidemics: application to classical swine fever epidemics in Spain. Prev Vet Med. 2016 Apr 1;126:66–73.
  • OIE. Chapter 15.2 Infection with classical swine fever virus. Terrestrial Animal Health Code; 2019.
  • Luo Y, Ji S, Liu Y, et al. Isolation and characterization of a moderately virulent classical swine fever virus emerging in China. Transbound Emerg Dis. 2017 Dec;64(6):1848–1857.
  • Leng C, Zhang H, Kan Y, et al. Characterisation of newly emerged isolates of classical swine fever virus in China, 2014-2015. J Vet Res. 2017 Apr 4;61(1):1–9.
  • Yao J, Su L, Wang Q, et al. Epidemiological investigation and phylogenetic analysis of classical swine fever virus in Yunnan province from 2015 to 2021. J Vet Sci. 2022 Jul;23(4):e57.
  • König M, Lengsfeld T, Pauly T, et al. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol. 1995 Oct;69(10):6479–6486.
  • Moormann RJ, Bouma A, Kramps JA, et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol. 2000 Apr 13;73(2–3):209–219.
  • Ganges L, Crooke HR, Bohórquez JA, et al. Classical swine fever virus: the past, present and future. Virus Res. 2020 Nov;289(198151).
  • Johns HL, Bensaude E, La Rocca SA, et al. Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. J Gen Virol. 2010 Apr;91(Pt 4):1038–1046.
  • Sun J, Shi Z, Guo H, et al. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus. J Gen Virol. 2010 Sep;91(Pt 9):2254–2262.
  • Ma S, Mao Q, Chen W, et al. Serum lipidomics analysis of classical swine fever virus infection in piglets and emerging role of free fatty acids in virus replication in vitro. Front Cell Infect Microbiol. 2019 Dec 3;9(410).
  • Zou X, Lin F, Yang Y, et al. Cholesterol biosynthesis modulates CSFV replication. Viruses. 2022 Jun 30;14(7):1450.
  • Liang XD, Zhang YN, Liu CC, et al. U18666a inhibits classical swine fever virus replication through interference with intracellular cholesterol trafficking. Vet Microbiol. 2019 Nov;238(108436).
  • Liu YY, Liang XD, Liu CC, et al. Fatty acid synthase Is involved in classical swine fever virus replication by interaction with NS4B. J Virol. 2021 Aug 10;95(17):e0078121.
  • Fan S, Wu K, Zhao M, et al. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy. 2021 Sep;17(9):2305–2324.
  • Pei J, Zhao M, Ye Z, et al. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014 Jan;10(1):93–110.
  • Pei J, Deng J, Ye Z, et al. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells. Autophagy. 2016 Oct 2;12(10):1738–1758.
  • Guo J, Wang Y, Zhao C, et al. Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerg Microbes Infect. 2021 Dec;10(1):2098–2112.
  • Lin S, Qiao N, Chen H, et al. Integration of transcriptomic and metabolomic data reveals metabolic pathway alteration in mouse spermatogonia with the effect of copper exposure. Chemosphere. 2020 Oct;256(126974).
  • Guo D, Tong Y, Jiang X, et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 2022 Sep 6;34(9):1312–1324. e6.
  • Gou H, Zhao M, Yuan J, et al. Metabolic profiles in cell lines infected with classical swine fever virus. Front Microbiol. 2017 Apr 20;8(691).
  • Gong W, Jia J, Zhang B, et al. Serum metabolomic profiling of piglets infected with virulent classical swine fever virus. Front Microbiol. 2017 Apr 27;8(731).
  • Yu W, Wang Z, Zhang K, et al. One-Carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell. 2019 Sep 19;75(6):1147–1160. e5.
  • Shen L, Hu P, Zhang Y, et al. Serine metabolism antagonizes antiviral innate immunity by preventing ATP6V0d2-mediated YAP lysosomal degradation. Cell Metab. 2021 May 4;33(5):971–987. e6.
  • Zhang W, Wang G, Xu ZG, et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell. 2019 Jun 27;178(1):176–189. e15.
  • Xie B, Zhao M, Song D, et al. Induction of autophagy and suppression of type I IFN secretion by CSFV. Autophagy. 2021 Apr;17(4):925–947.
  • Wang T, Zhang L, Liang W, et al. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture. Autophagy. 2022 Jun;18(6):1433–1449.
  • Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015 May: 479–480. 609–618.
  • Guo H, Wang Q, Ghneim K, et al. Multi-omics analyses reveal that HIV-1 alters CD4+ T cell immunometabolism to fuel virus replication. Nat Immunol. 2021 Apr;22(4):423–433.
  • Gong Y, Tang N, Liu P, et al. Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells. Autophagy. 2022 Jul;18(7):1503–1521.
  • Chengcheng Z, Xiuling W, Jiahao S, et al. Mitophagy induced by classical swine fever virus nonstructural protein 5A promotes viral replication. Virus Res. 2022 Aug 7;320(198886).
  • Ozawa S, Ueda S, Imamura H, et al. Glycolysis, but not mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes. Sci Rep. 2015 Dec 18;5(18575).
  • Heiden MG V, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029–1033.
  • Batista-Gonzalez A, Vidal R, Criollo A, et al. Insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol. 2020 Jan 10;10:2993.
  • Morrissey SM, Zhang F, Ding C, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 2021 Oct 5;33(10):2040–2058. e10.
  • Pucino V, Certo M, Bulusu V, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 2019 Dec 3;30(6):1055–1074. e8.
  • Wu S, Cao R, Tao B, et al. Pyruvate facilitates FACT-mediated γH2AX loading to chromatin and promotes the radiation resistance of glioblastoma. Adv Sci (Weinh). 2022 Mar;9(8):e2104055.
  • Martin-Sancho L, Tripathi S, Rodriguez-Frandsen A, et al. Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nat Microbiol. 2021 Oct;6(10):1319–1333.
  • Miao G, Zhao H, Li Y, et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell. 2021 Feb 22;56(4):427–442. e5.
  • Hou P, Wang X, Wang H, et al. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy. 2022 June 19: 1–19.
  • Crawford SE, Hyser JM, Utama B, et al. Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-β signaling is required for rotavirus replication. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3405–E3413.