3,293
Views
7
CrossRef citations to date
0
Altmetric
Coronaviruses

The nasopharyngeal microbiome in COVID-19

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: e2165970 | Received 21 Nov 2022, Accepted 04 Jan 2023, Published online: 20 Jan 2023

References

  • Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
  • Kilian M, Chapple IL, Hannig M, et al. The oral microbiome - an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–666.
  • Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103.
  • Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.
  • Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–519.
  • Frank DN, Pace NR. Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol. 2008;24(1):4–10.
  • Sansonetti PJ, Medzhitov R. Learning tolerance while fighting ignorance. Cell. 2009;138(3):416–420.
  • Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400.
  • Nemergut DR, Schmidt SK, Fukami T, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77(3):342–356.
  • Gaci N, Borrel G, Tottey W, et al. Archaea and the human gut: new beginning of an old story. World J Gastroenterol. 2014;20(43):16062–16078.
  • Horz HP, Conrads G. Methanogenic Archaea and oral infections - ways to unravel the black box. J Oral Microbiol. 2011;3.
  • Koskinen K, Reichert JL, Hoier S, et al. Massively parallel coincidence counting of high-dimensional entangled states. Sci Rep. 2018;8(1):1296.
  • Moissl-Eichinger C, Probst AJ, Birarda G, et al. Human age and skin physiology shape diversity and abundance of Archaea on skin. Sci Rep. 2017;7(1):4039.
  • Mukherjee PK, Sendid B, Hoarau G, et al. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2015;12(2):77–87.
  • Gow NAR, Yadav B. Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. Microbiology (Reading). 2017;163(8):1145–1147.
  • Parfrey LW, Walters WA, Lauber CL, et al. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front Microbiol. 2014;5:298.
  • Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–810.
  • Team NHMPA. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome. 2019;7(1):31.
  • Sahin-Yilmaz A, Naclerio RM. Anatomy and physiology of the upper airway. Proc Am Thorac Soc. 2011;8(1):31–39.
  • Dubourg G, Edouard S, Raoult D. Relationship between nasopharyngeal microbiota and patient's susceptibility to viral infection. Expert Rev Anti Infect Ther. 2019;17(6):437–447.
  • Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15(5):259–270.
  • Salzano FA, Marino L, Salzano G, et al. Microbiota composition and the integration of exogenous and endogenous signals in reactive nasal inflammation. J Immunol Res. 2018;2018:2724951.
  • Di Stadio A, Costantini C, Renga G, et al. The microbiota/host immune system interaction in the nose to protect from COVID-19. Life (Basel). 2020;10(12.
  • Pabst R. Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)—Structure, function and species differences. Vaccine. 2015;33(36):4406–4413.
  • De Rudder C, Garcia-Tímermans C, De Boeck I, et al. Lacticaseibacillus casei AMBR2 modulates the epithelial barrier function and immune response in a donor-derived nasal microbiota manner. Sci Rep. 2020;10(1):16939.
  • Dimitri-Pinheiro S, Soares R, Barata P. The Microbiome of the Nose-Friend or Foe? Allergy Rhinol (Providence). 2020 2020 Jan-Dec;11:2152656720911605.
  • Hanada S, Pirzadeh M, Carver KY, et al. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol. 2018;9:2640.
  • Kumpitsch C, Koskinen K, Schöpf V, et al. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17(1):87.
  • Edouard S, Million M, Bachar D, et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis. 2018;37(9):1725–1733.
  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733.
  • Tay MZ, Poh CM, Rénia L, et al. The Trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374.
  • Zipeto D, Palmeira JDF, Argañaraz GA, et al. Ace2/ADAM17/TMPRSS2 interplay May Be the main risk factor for COVID-19. Front Immunol. 2020;11:576745.
  • Rahman N, Basharat Z, Yousuf M, et al. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2). Molecules. 2020;25(10.
  • Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182(2):429–446.e14.
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 Is an interferon-stimulated gene in human airway epithelial cells and Is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e19.
  • Zhou Y, Leary O, J T. Relative sensitivity of anterior nares and nasopharyngeal swabs for initial detection of SARS-CoV-2 in ambulatory patients: Rapid review and meta-analysis. PLoS One. 2021;16(7):e0254559.
  • Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739–751.
  • Fiorito S, Soligo M, Gao Y, et al. Is the epithelial barrier hypothesis the key to understanding the higher incidence and excess mortality during COVID-19 pandemic? The case of Northern Italy. Allergy. 2022;77(5):1408–1417.
  • Hang J, Zavaljevski N, Yang Y, et al. Composition and variation of respiratory microbiota in healthy military personnel. PLoS One. 2017;12(12):e0188461.
  • De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol. 2022;12:736397.
  • Lemon KP, Armitage GC, Relman DA, et al. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med. 2012;4(137):137rv5.
  • De Maio F, Posteraro B, Ponziani FR, et al. Nasopharyngeal microbiota profiling of SARS-CoV-2 infected patients. Biol Proced Online. 2020;22:18.
  • Braun T, Halevi S, Hadar R, et al. SARS-CoV-2 does not have a strong effect on the nasopharyngeal microbial composition. Sci Rep. 2021;11(1):8922.
  • Nardelli C, Gentile I, Setaro M, et al. Nasopharyngeal microbiome signature in COVID-19 positive patients: Can We definitively Get a role to fusobacterium periodonticum? Front Cell Infect Microbiol. 2021;11:625581.
  • Nagy-Szakal D, Couto-Rodriguez M, Wells HL, et al. Targeted hybridization capture of SARS-CoV-2 and metagenomics enables genetic variant discovery and nasal microbiome insights. Microbiol Spectr. 2021;9(2):e0019721.
  • Gupta A, Karyakarte R, Joshi S, et al. Nasopharyngeal microbiome reveals the prevalence of opportunistic pathogens in SARS-CoV-2 infected individuals and their association with host types. Microbes Infect. 2022;24(1):104880.
  • Engen PA, Naqib A, Jennings C, et al. Nasopharyngeal microbiota in SARS-CoV-2 positive and negative patients. Biol Proced Online. 2021;23(1):10.
  • Gauthier NPG, Locher K, MacDonald C, et al. Alterations in the nasopharyngeal microbiome associated with SARS-CoV-2 infection status and disease severity. PLoS One. 2022;17(10):e0275815.
  • Zhang H, Ai JW, Yang W, et al. Metatranscriptomic characterization of coronavirus disease 2019 identified a host transcriptional classifier associated With immune signaling. Clin Infect Dis. 2021;73(3):376–385.
  • Bai X, Narayanan A, Skagerberg M, et al. Characterization of the upper respiratory bacterial microbiome in critically Ill COVID-19 patients. Biomedicines. 2022;10(5.
  • Mostafa HH, Fissel JA, Fanelli B, et al. Metagenomic next-generation sequencing of nasopharyngeal specimens collected from confirmed and suspect COVID-19 patients. mBio. 2020;11(6.
  • Ventero MP, Moreno-Perez O, Molina-Pardines C, et al. Nasopharyngeal Microbiota as an early severity biomarker in COVID-19 hospitalised patients. J Infect. 2022;84(3):329–336.
  • Qin T, Wang Y, Deng J, et al. Super dominant pathobiontic bacteria in the nasopharyngeal microbiota cause secondary bacterial infection in COVID-19 patients. Microbiol Spectr. 2022;10(3):e0195621.
  • Chen J, Liu X, Liu W, et al. Comparison of the respiratory tract microbiome in hospitalized COVID-19 patients with different disease severity. J Med Virol. 2022;94(11):5284–5293.
  • Crovetto F, Selma-Royo M, Crispi F, et al. Nasopharyngeal microbiota profiling of pregnant women with SARS-CoV-2 infection. Sci Rep. 2022;12(1):13404.
  • Ventero MP, Cuadrat RRC, Vidal I, et al. Nasopharyngeal microbial communities of patients infected With SARS-CoV-2 that developed COVID-19. Front Microbiol. 2021;12:637430.
  • Liu J, Liu S, Zhang Z, et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotechnol. 2021;6(3):135–143.
  • Lloréns-Rico V, Gregory AC, Van Weyenbergh J, et al. Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host. Nat Commun. 2021;12(1):6243.
  • Hoque MN, Sarkar MMH, Rahman MS, et al. SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome with inclusion of pathobionts. Sci Rep. 2021;11(1):24042.
  • Rattanaburi S, Sawaswong V, Chitcharoen S, et al. Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients. Exp Biol Med (Maywood). 2022;247(5):409–415.
  • Ferrari L, Favero C, Solazzo G, et al. Nasopharyngeal bacterial microbiota composition and SARS-CoV-2 IgG antibody maintenance in asymptomatic/paucisymptomatic subjects. Front Cell Infect Microbiol. 2022;12:882302.
  • Kolhe R, Sahajpal NS, Vyavahare S, et al. Alteration in nasopharyngeal microbiota profile in aged patients with COVID-19. Diagnostics (Basel). 2021;11(9.
  • Shilts MH, Rosas-Salazar C, Strickland BA, et al. Severe COVID-19 Is associated With an altered upper respiratory tract microbiome. Front Cell Infect Microbiol. 2021;11:781968.
  • Giugliano R, Sellitto A, Ferravante C, et al. NGS analysis of nasopharyngeal microbiota in SARS-CoV-2 positive patients during the first year of the pandemic in the Campania Region of Italy. Microb Pathog. 2022;165:105506.
  • Ferravante C, Sanna G, Melone V, et al. Nasopharyngeal virome analysis of COVID-19 patients during three different waves in Campania region of Italy. J Med Virol. 2022;94(5):2275–2283.
  • Tchoupou Saha OF, Dubourg G, Yacouba A, et al. Profile of the nasopharyngeal microbiota affecting the clinical course in COVID-19 patients. Front Microbiol. 2022;13:871627.
  • Hurst JH, McCumber AW, Aquino JN, et al. Age-related changes in the nasopharyngeal microbiome are associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and symptoms among children, adolescents, and young adults. Clin Infect Dis. 2022;75(1):e928–e937.
  • Ferravante C, Arslan-Gatz BS, Dell'Annunziata F, et al. Dynamics of nasopharyngeal tract phageome and association with disease severity and age of patients during three waves of COVID-19. J Med Virol. 2022;94(11):5567–5573.
  • Musuuza JS, Watson L, Parmasad V, et al. Multiple spatial reference frames underpin perceptual recalibration to audio-visual discrepancies. PLoS One. 2021;16(5):e0251827.
  • Kim JG, Zhang A, Rauseo AM, et al. The nasopharyngeal and salivary microbiomes in COVID-19 patients with and without asthma. Allergy. 2022;77(12):3676–3679.
  • Chen X, Liao B, Cheng L, et al. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020;104(18):7777–7785.
  • Linneberg A, Kampmann FB, Israelsen SB, et al. The association of Low vitamin K status with mortality in a cohort of 138 hospitalized patients with COVID-19. Nutrients. 2021;13(6.
  • Ohsaki Y, Shirakawa H, Miura A, et al. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J Nutr Biochem. 2010;21(11):1120–1126.
  • Young RB, Marcelino VR, Chonwerawong M, et al. Key technologies for progressing discovery of microbiome-based medicines. Front Microbiol. 2021;12:685935.
  • Ferdous T, Jiang L, Dinu I, et al. The rise to power of the microbiome: power and sample size calculation for microbiome studies. Mucosal Immunol. 2022;15(6):1060–1070.
  • Andrés M, Leon-Ramirez JM, Moreno-Perez O, et al. Fatality and risk features for prognosis in COVID-19 according to the care approach - a retrospective cohort study. PLoS One. 2021;16(3):e0248869.
  • Chiu CH, Chang YH, Chang FY, et al. Humoral, cellular and cytokine immune responses against SARS-CoV-2 variants in COVID-19 convalescent and confirmed patients With different disease severities. Front Cell Infect Microbiol. 2022;12:862656.
  • Tyrkalska SD, Martinez-Lopez A, Arroyo AB, et al. Differential proinflammatory activities of Spike proteins of SARS-CoV-2 variants of concern. Sci Adv. 2022;8(37):eabo0732.
  • Panebianco C, Latiano T, Pazienza V. Microbiota manipulation by probiotics administration as emerging tool in cancer prevention and therapy. Front Oncol. 2020;10:679.
  • Boulangé CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42.
  • Li N, Ma WT, Pang M, et al. The commensal microbiota and viral infection: A comprehensive review. Front Immunol. 2019;10:1551.