2,939
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Risk assessment of the newly emerged H7N9 avian influenza viruses

, , , , , & ORCID Icon show all
Article: 2172965 | Received 09 Nov 2022, Accepted 23 Jan 2023, Published online: 08 Feb 2023

References

  • Food and Agriculture Organization. H7N9 situation update. [cited 2023 Jan 13]. Available from: http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/Situation_update.html.
  • Ke C, Mok CKP, Zhu W, et al. Human infection with highly pathogenic avian influenza A(H7N9) virus, China. Emerg Infect Dis. 2017 Jul;23(8):1332–1340.
  • Imai M, Watanabe T, Kiso M, et al. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe. 2017 Nov 8;22(5):615–626 e8.
  • Shi J, Deng G, Ma S, et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host Microbe. 2018 Oct 10;24(4):558–568 e7.
  • Tanikawa T, Uchida Y, Takemae N, et al. Pathogenicity of two novel human-origin H7N9 highly pathogenic avian influenza viruses in chickens and ducks. Arch Virol. 2019 Feb;164(2):535–545.
  • Shi Z, Wei L, Wang P, et al. Spatio-temporal spread and evolution of influenza A (H7N9) viruses. Front Microbiol. 2022 Sep;13:1002522.
  • Zhang W, Zhao K, Jin J, et al. A hospital cluster combined with a family cluster of avian influenza H7N9 infection in Anhui Province, China. J Infect. 2019 Jul;79(1):49–55.
  • Chang P, Sealy JE, Sadeyen JR, et al. Amino acid residue 217 in the hemagglutinin glycoprotein is a key mediator of avian influenza H7N9 virus antigenicity. J Virol. 2019 Jan 1;93(1):e01627–18.
  • Chang P, Sealy JE, Sadeyen JR, et al. Immune escape adaptive mutations in the H7N9 avian influenza hemagglutinin protein increase virus replication fitness and decrease pandemic potential. J Virol. 2020 Sep;94(19):e00216–20.
  • Chen J, Liu Z, Li K, et al. Emergence of novel avian origin H7N9 viruses after introduction of H7-Re3 and rLN79 vaccine strains to China. Transbound Emerg Dis. 2022 Mar;69(2):213–220.
  • Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012 May;486(7403):420–428.
  • Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012 Jun;336(6088):1534–1541.
  • Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 2000 Sep;74(18):8502–8512.
  • Xiong X, Martin SR, Haire LF, et al. Receptor binding by an H7N9 influenza virus from humans. Nature. 2013 Jul 25;499(7459):496–499.
  • Russell CJ. Hemagglutinin stability and its impact on influenza A virus infectivity, pathogenicity, and transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses. 2021 Apr;13(5):746.
  • Russell CJ, Hu M, Okda FA. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 2018 Oct;26(10):841–853.
  • Sun X, Belser JA, Pappas C, et al. Risk assessment of fifth-wave H7N9 influenza A viruses in mammalian models. J Virol. 2019 Jan;93(1):e01740–18.
  • Sun X, Belser JA, Yang H, et al. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. Virology. 2019 Sep;535:232–240.
  • Shi J, Deng G, Kong H, et al. H7n9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017 Dec;27(12):1409–1421.
  • Chang P, Lukosaityte D, Sealy JE, et al. Antigenic characterization of human monoclonal antibodies for therapeutic use against H7N9 avian influenza virus. J Virol. 2023 Jan;97(1):e0143122.
  • Schrauwen EJ, Richard M, Burke DF, et al. Amino acid substitutions that affect receptor binding and stability of the hemagglutinin of influenza A/H7N9 virus. J Virol. 2016 Jan;90(7):3794–3799.
  • Russier M, Yang G, Rehg JE, et al. Molecular requirements for a pandemic influenza virus: an acid-stable hemagglutinin protein. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1636–1641.
  • Wagner R, Matrosovich M, Klenk HD. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol. 2002 May-Jun;12(3):159–166.
  • Huang KA, Rijal P, Jiang H, et al. Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol. 2019 Feb;4(2):306–315.
  • Barr IG, McCauley J, Cox N, et al. Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza viruses: basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009-2010 northern hemisphere season. Vaccine. 2010 Feb;28(5):1156–1167.
  • Reed ML, Bridges OA, Seiler P, et al. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. J Virol. 2010 Feb;84(3):1527–1535.
  • Zhong L, Wang X, Li Q, et al. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. J Virol. 2014 Sep;88(17):9568–9578.
  • Gu J, Yan Y, Zeng Z, et al. Characterization of two chicken origin highly pathogenic H7N9 viruses isolated in northern China. Vet Microbiol. 2022 May;268:109394.
  • Yin X, Deng G, Zeng X, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathog. 2021 Apr;17(4):e1009561.
  • Li X, Gao Y, Ye Z. A single amino acid substitution at residue 218 of hemagglutinin improves the growth of influenza A(H7N9) candidate vaccine viruses. J Virol. 2019 Oct;93(19):e00570–19.
  • Carr CM, Chaudhry C, Kim PS. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14306–14313.
  • Peacock TP, Benton DJ, James J, et al. Immune escape variants of H9N2 influenza viruses containing deletions at the hemagglutinin receptor binding site retain fitness In vivo and display enhanced zoonotic characteristics. J Virol. 2017 Jul 15;91(14):e00218–17.
  • Watanabe Y, Arai Y, Daidoji T, et al. Characterization of H5N1 influenza virus variants with hemagglutinin mutations isolated from patients. MBio. 2015 Apr;6(2):e00081–15.
  • Bhat S, James J, Sadeyen JR, et al. Coinfection of chickens with H9N2 and H7N9 avian influenza viruses leads to emergence of reassortant H9N9 virus with increased fitness for poultry and a zoonotic potential. J Virol. 2022 Mar;96(5):e0185621.
  • Lukosaityte D, Sadeyen JR, Shrestha A, et al. Engineered recombinant single chain variable fragment of monoclonal antibody provides protection to chickens infected with H9N2 avian influenza. Vaccines (Basel). 2020 Mar;8(1):118.
  • World Health Organization. WHO manual on animal influenza diagnosis and surveillance. [cited 2023 Jan 13]. Available from: https://apps.who.int/iris/bitstream/handle/10665/68026/WHO_CDS_CSR_NCS_2002.5.pdf?sequence = 1&isAllowed = y.
  • Chang P, Yao Y, Tang N, et al. The application of NHEJ-CRISPR/Cas9 and Cre-Lox system in the generation of bivalent duck enteritis virus vaccine against avian influenza virus. Viruses. 2018 Feb;10(2):8.
  • Lin YP, Xiong X, Wharton SA, et al. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A. 2012 Dec;109(52):21474–9.