2,943
Views
1
CrossRef citations to date
0
Altmetric
Emerging and Re-Emerging Coronaviruses

Safety and immunogenicity of heterologous boosting with orally administered aerosolized bivalent adenovirus type-5 vectored COVID-19 vaccine and B.1.1.529 variant adenovirus type-5 vectored COVID-19 vaccine in adults 18 years and older: a randomized, double blinded, parallel controlled trial

, , , , , , , , , , , , , & show all
Article: 2281355 | Received 27 Apr 2023, Accepted 04 Nov 2023, Published online: 30 Dec 2023

References

  • Dong Y, Zhai W, Fang B, et al. A retrospective study of Pupingqinghua prescription versus Lianhuaqingwen in Chinese participants infected with SARS-CoV-2 Omicron variants. Front Pharmacol. 2022;13. doi:10.3389/fphar.2022.988524
  • Xu A, Hong B, Lou F, et al. Sub-lineages of the SARS-CoV-2 Omicron variants: characteristics and prevention. MedComm. 2022;3(3). doi:10.1002/MCO2.172
  • Callaway E. COVID “variant soup” is making winter surges hard to predict. Nature. 2022;611:213–214. doi:10.1038/d41586-022-03445-6
  • Deepanshi, Budhiraja I, Garg D, et al. A comprehensive review on variants of SARS-CoVs-2: challenges, solutions and open issues. Comput Commun. 2023;197:34–51. doi:10.1016/j.comcom.2022.10.013
  • Wang R, Zhang Q, Zhang R, et al. SARS-CoV-2 Omicron variants reduce antibody neutralization and acquire usage of mouse ACE2. Front Immunol. 2022;13:854952. doi: 10.3389/fimmu.
  • Vadrevu KM, Reddy S, Jogdand H, et al. Immunogenicity and reactogenicity of an inactivated SARS-CoV-2 vaccine (BBV152) in children aged 2–18 yea1rs: interim data from an open-label, non-randomised, age de-escalation phase 2/3 study. Lancet Infect Dis. 2022;22(9):1303–1312. doi:10.1016/S1473-3099(22)00307-3
  • Walter EB, Talaat KR, Sabharwal C, et al. Evaluation of the BNT162b2 COVID-19 vaccine in children 5 to 11 years of age. N Engl J Med. 2022;386(1):35–46. doi:10.1056/NEJMoa2116298
  • Li G, Cappuccini F, Marchevsky NG, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in children aged 6–17 years: a preliminary report of COV006, a phase 2 single-blind, randomised, controlled trial. Lancet. 2022;399:2212–2225. doi:10.1016/S0140-6736(22)00770-X
  • Arora P, Kempf A, Nehlmeier I, et al. Augmented neutralisation resistance of emerging omicron subvariants BA.2.12.1, BA.4, and BA.5. Lancet Infect Dis. 2022;22(8):1117–1118. doi:10.1016/S1473-3099(22)00422-4
  • Dolgin E. Pan-coronavirus vaccine pipeline takes form. Nat Rev Drug Discov. 2022;21(5):324–326. doi:10.1038/d41573-022-00074-6
  • Arbel R, Peretz A, Sergienko RF, et al. Effectiveness of the bivalent mRNA vaccine in preventing severe COVID-19 outcomes: an observational cohort study. Available at SSRN: https://ssrn.com/abstract=4314067.
  • Eiden J, Fierro C, Schwartz H, et al. Intranasal M2SR (M2-deficient single replication) H3N2 influenza vaccine provides enhanced mucosal and serum antibodies in adults. J Infect Dis. 2022;227(1):103–112. doi:10.1093/infdis/jiac433
  • Xu F, Wu S, Yi L, et al. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. Emerg Microbes Infect. 2022;11(1):439–442. doi:10.1080/22221751.2022.2030199
  • Afkhami S, D’Agostino MR, Zhang A, et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell. 2022;185(5):896–915. doi:10.1016/j.cell.2022.02.005
  • Li JX, Wu SP, Guo XL, et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open label, single-centre trial. Lancet Respir Med. 2022;10(8):739–748. doi:10.1016/S2213-2600(22)00087-X
  • Zhong J, Liu S, Cui T, et al. Heterologous booster with inhaled adenovirus vector COVID-19 vaccine generated more neutralizing antibodies against different SARS-CoV-2 variants. Emerg Microbes Infect. 2022;11(1):2689–2697. doi:10.1080/22221751.2022.2132881
  • Jin L, Tang R, Wu S, et al. Antibody persistence and safety after heterologous boosting with orally aerosolised Ad5-nCoV in individuals primed with two-dose CoronaVac previously: 12-month analyses of a randomized controlled trial. Emerg Microbes Infect. 2023;12(1):2155251. doi:10.1080/22221751.2022.2155251
  • Li JX, Hou LH, Gou JB, et al. Six-Province COVID-19 vaccine study group. Safety, immunogenicity and protection of heterologous boost with an aerosolised Ad5-nCoV after two-dose inactivated COVID-19 vaccines in adults: a multicentre, open-label phase 3 trial. Lancet Infect Dis. 2023 Jun 20: S1473–3099(23)00350-X. doi:10.1016/S1473-3099(23)00350-X. Epub ahead of print. PMID: 37352880.
  • Huang T, Zhang S, Dai DF, et al. Safety and immunogenicity of heterologous boosting with orally aerosolised or intramuscular Ad5-nCoV vaccine and homologous boosting with inactivated vaccines (BBIBP-CorV or CoronaVac) in children and adolescents: a randomised, open-label, parallel-controlled, non-inferiority, single-centre study. Lancet Respir Med. 2023 May 17: S2213–2600(23)00129-7. doi:10.1016/S2213-2600(23)00129-7. Epub ahead of print. PMID: 37209700.
  • Wang Z, Zhao Z, Cui T, et al. Heterologous boosting with third dose of coronavirus disease recombinant subunit vaccine increases neutralizing antibodies and T cell immunity against different severe acute respiratory syndrome coronavirus 2 variants. Emerg Microbes Infect. 2022;11(1):829–840. doi:10.1080/22221751.2022.2048969
  • Nie J, Li Q, Wu J, et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat Protoc. 2020;15(11):3699–3715. doi:10.1038/s41596-020-0394-5
  • Li JX, Wu SP, Guo XL, et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial. Lancet Respir Med. 2022;10(8):739–748. doi:10.1016/S2213-2600(22)00087-X
  • Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–1211. doi:10.1038/s41591-021-01377-8
  • Gilbert PB, Montefiori DC, McDermott AB, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science. 2022;375(6576):43–50. doi:10.1126/science.abm3425
  • Yisimayi A, Song W, Wang J, et al. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. bioRxiv. 2023. DOI: 10.1101/2023.05.01.538516
  • Sonnleitner ST, Walder S, Knabl L, et al. Omicron (B.1.1.529) BA.1 or BA.2-related effects on immune responses in previously naïve versus imprinted individuals: immune imprinting as an advantage in the humoral immune response against novel variants. Front Immunol. 2023;14:1165769. doi:10.3389/fimmu.2023.1165769
  • Zhu A, Wei P, Man M, et al. Antigenic characterization of SARS-CoV-2 Omicron subvariants XBB.1.5, BQ.1, BQ.1.1, BF.7 and BA.2.75.2. Sig Transduct Target Ther. 2023;8(1). doi: 10.1038/s41392-023-01391-x.
  • Russell MW, Mestecwwky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol. 2022;13:957107. doi:10.3389/fimmu.2022.957107
  • Ma H, Zeng W, He H, et al. Serum iga, igm, and igg responses in COVID-19. Cell Mol Immunol. 2020;17(7):773–775. doi:10.1038/s41423-020-0474-z
  • Yu HQ, Sun BQ, Fang ZF, et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J. 2020;56(2):2001526. doi: 10.1183/13993003.01526-2020.
  • Sterlin D, Mathian A, Miyara M, et al. Iga dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med. 2021;13(577):eabd2223. doi:10.1126/scitranslmed.abd2223
  • Wright PF, Prevost-Reilly AC, Natarajan H, et al. Longitudinal systemic and mucosal immune responses to SARS-CoV-2 infection. J Infect Dis. 2022;226(7):1204–1214. doi:10.1093/infdis/jiac065
  • Sano K, Bhavsar D, Singh G, et al. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nat Commun. 2022;13(1):5135. doi:10.1038/s41467-022-32389-8
  • Nahass GR, Salomon-Shulman RE, Blacker G, et al. Intramuscular SARS-CoV-2 vaccines elicit varying degrees of plasma and salivary antibody responses as compared to natural infection. Medrxiv. 2021: 2021-08.
  • Sheikh-Mohamed S, Isho B, Chao GY, et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunol. 2022;15(5):799–808. doi:10.1038/s41385-022-00511-0
  • Kumar BV, Ma W, Miron M, et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 2017;20(12):2921–2934. doi:10.1016/j.celrep.2017.08.078
  • Ogongo P, Porterfield JZ, Leslie A. Lung tissue resident memory T-cells in the immune response to Mycobacterium tuberculosis. Front Immunol. 2019;10:992. doi:10.3389/fimmu.2019.00992
  • Snyder ME, Farber DL. Human lung tissue resident memory T cells in health and disease. Curr Opin Immunol. 2019;59:101–108. doi:10.1016/j.coi.2019.05.011
  • Szabo PA, Dogra P, Gray JI, et al. Analysis of respiratory and systemic immune responses in COVID-19 reveals mechanisms of disease pathogenesis. medRxiv. 2020: 2020–10.
  • Niessl J, Sekine T, Lange J, et al. Identification of resident memory CD8+ T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci Immunol. 2021;6(64):eabk0894. doi:10.1126/sciimmunol.abk0894
  • Hirahara K, Kokubo K, Aoki A, et al. The role of CD4+ resident memory T cells in local immunity in the mucosal tissue–protection versus pathology. Front Immunol. 2021;12:616309. doi:10.3389/fimmu.2021.616309
  • Guerrieri M, Francavilla B, Fiorelli D, et al. Nasal and salivary mucosal humoral immune response elicited by mRNA BNT162b2 COVID-19 vaccine compared to SARS-CoV-2 natural infection. Vaccines (Basel). 2021;9:1499. doi:10.3390/vaccines9121499