2,789
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene

, ORCID Icon, , , , , , , , , , , ORCID Icon, , & ORCID Icon show all
Article: 2284294 | Received 02 Aug 2023, Accepted 12 Nov 2023, Published online: 04 Jan 2024

References

  • Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109(11):4269–4274. doi:10.1073/pnas.1116200109
  • Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9(10):e1003657, doi:10.1371/journal.ppat.1003657
  • Alexander DJ, Brown IH. History of highly pathogenic avian influenza. Rev Sci Tech. 2009;28(1):19–38. doi:10.20506/rst.28.1.1856
  • Kobayashi Y, Horimoto T, Kawaoka Y, et al. Pathological studies of chickens experimentally infected with two highly pathogenic avian influenza viruses. Avian Pathol. 1996;25(2):285–304. doi:10.1080/03079459608419142
  • Xu X, Subbarao K, Cox NJ, et al. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261(1):15–19. doi:10.1006/viro.1999.9820
  • Chen H, Deng G, Li Z, et al. The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A. 2004;101(28):10452–10457. doi:10.1073/pnas.0403212101
  • Chen H. H5N1 avian influenza in China. Sci China C Life Sci. 2009;52(5):419–427. doi:10.1007/s11427-009-0068-6
  • Cui P, Zeng X, Li X, et al. Genetic and biological characteristics of the globally circulating H5N8 avian influenza viruses and the protective efficacy offered by the poultry vaccine currently used in China. Sci China Life Sci. 2022;65(4):795–808. doi:10.1007/s11427-021-2025-y
  • Cui P, Shi J, Wang C, et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect. 2022;11(1):1693–1704. doi:10.1080/22221751.2022.2088407
  • WHO/FAO/OIE. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis. 2008;14(7):e1, doi:10.3201/eid1407.071681
  • WHO. Antigenic and genetic characteristics of zoonotic influenza A viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec. 2020;95(44):525–539.
  • Uchida Y, Mase M, Yoneda K, et al. Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan. Emerg Infect Dis. 2008;14(9):1427–1429. doi:10.3201/eid1409.080655
  • Kang HM, Batchuluun D, Kim MC, et al. Genetic analyses of H5N1 avian influenza virus in Mongolia, 2009 and its relationship with those of Eastern Asia. Vet Microbiol. 2011;147(1-2):170–175. doi:10.1016/j.vetmic.2010.05.045
  • Li Y, Liu L, Zhang Y, et al. New avian influenza virus (H5N1) in wild birds, Qinghai, China. Emerg Infect Dis. 2011;17(2):265–267. doi:10.3201/eid1702.100732
  • Marinova-Petkova A, Georgiev G, Seiler P, et al. Spread of influenza virus A (H5N1) clade 2.3.2.1 to Bulgaria in common buzzards. Emerg Infect Dis. 2012;18(10):1596–602. doi:10.3201/eid1810.120357
  • Kim HR, Lee YJ, Park CK, et al. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea. Emerg Infect Dis. 2012;18(3):480–483. doi:10.3201/1803.111490
  • Naguib MM, Kinne J, Chen H, et al. Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread. J Gen Virol. 2015;96(11):3212–3222. doi:10.1099/jgv.0.000274
  • Nagarajan S, Tosh C, Smith DK, et al. Avian influenza (H5N1) virus of clade 2.3.2 in domestic poultry in India. PLoS One. 2012;7(2):e31844, doi:10.1371/journal.pone.0031844
  • Marinova-Petkova A, Feeroz MM, Rabiul Alam SM, et al. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh. Emerg Microbes Infect. 2014;3(2):e11. doi:10.1038/emi.2014.11
  • Li C, Bu Z, Chen H. Avian influenza vaccines against H5N1 ‘bird flu’. Trends Biotechnol. 2014;32(3):147–156. doi:10.1016/j.tibtech.2014.01.001
  • Zeng X, Chen P, Liu L, et al. Protective efficacy of an H5N1 inactivated vaccine against challenge with lethal H5N1, H5N2, H5N6, and H5N8 influenza viruses in chickens. Avian Dis. 2016;60(1 Suppl):253–255. doi:10.1637/11179-052015-ResNoteR
  • Zeng X, Deng G, Liu L, et al. Protective efficacy of the inactivated H5N1 influenza vaccine Re-6 against different clades of H5N1 viruses isolated in China and the democratic People's Republic of Korea. Avian Dis. 2016;60(1 Suppl):238–240. doi:10.1637/11178-051915-ResNote
  • Zeng X, Chen X, Wu J, et al. Protective efficacy of an H5/H7 trivalent inactivated vaccine produced from Re-11, Re-12, and H7-Re2 strains against challenge with different H5 and H7 viruses in chickens. Journal of Integrative Agriculture. 2020;19(9):2294–2300. doi:10.1016/S2095-3119(20)63301-9
  • Zeng X, He X, Meng F, et al. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses. Journal of Integrative Agriculture. 2022;21(7):2086–2094. doi:10.1016/S2095-3119(22)63904-2
  • Shi J, Zeng X, Cui P, et al. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect. 2023;12(1):2155072. doi:10.1080/22221751.2022.2155072
  • Subbarao K, Chen H, Swayne D, et al. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology. 2003;305(1):50–54. doi:10.1006/viro.2002.1742
  • Tian G, Zhang S, Li Y, et al. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology. 2005;341(1):153–162. doi:10.1016/j.virol.2005.07.011
  • Tian G, Zeng X, Li Y, et al. Protective efficacy of the H5 inactivated vaccine against different highly pathogenic H5N1 avian influenza viruses isolated in China and Vietnam. Avian Dis. 2010;54(1 Suppl):287–289. doi:10.1637/8707-031709-ResNote.1
  • Cui Y, Li Y, Li M, et al. Evolution and extensive reassortment of H5 influenza viruses isolated from wild birds in China over the past decade. Emerg Microbes Infect. 2020;9(1):1793–1803. doi:10.1080/22221751.2020.1797542
  • OFFLU-WOAH. Influenza-A-Cleavage-Sites-Final-04-01-2022. OFFLU Network on Avian Influenza. 2022: https://www.offlu.org/wp-content/uploads/2022/01/Influenza-A-Cleavage-Sites-Final-04-01-2022.pdf.
  • Hatta M, Hatta Y, Kim JH, et al. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog. 2007;3(10):e133. doi:10.1371/journal.ppat.0030133
  • Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008;82(3):1146–1154. doi:10.1128/JVI.01698-07
  • Fan S, Deng G, Song J, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384(1):28–32. doi:10.1016/j.virol.2008.11.044
  • Feng X, Wang Z, Shi J, et al. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice. J Virol. 2016;90(4):1872–1879. doi:10.1128/JVI.02387-15
  • Ma S, Zhang B, Shi J, et al. Amino acid mutations A286 V and T437M in the nucleoprotein attenuate H7N9 viruses in mice. J Virol. 2020;94(2):e01530-19. doi:10.1128/JVI.01530-19
  • Zhang Y, Zhao C, Hou Y, et al. Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. Sci China Life Sci. 2021;64(11):1236–1280. doi:10.1007/s11427-020-1915-y
  • Kong X, Guan L, Shi J, et al. A single-amino-acid mutation at position 225 in hemagglutinin attenuates H5N6 influenza virus in mice. Emerg Microbes Infect. 2021;10(1):2052–2061. doi:10.1080/22221751.2021.1997340
  • Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009 Dec;5(12):e1000709. doi:10.1371/journal.ppat.1000709
  • de Graaf M, Fouchier RA. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. Embo J. 2014;33(8):823–841. doi:10.1002/embj.201387442
  • Yin X, Deng G, Zeng X, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathog. 2021 Apr 27;17(4):e1009561. doi:10.1371/journal.ppat.1009561
  • Chen H, Bright RA, Subbarao K, et al. Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Res. 2007;128(1-2):159–163. doi:10.1016/j.virusres.2007.04.017
  • Katz JM, Lu X, Tumpey TM, et al. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J Virol. 2000;74(22):10807–10810. doi:10.1128/JVI.74.22.10807-10810.2000
  • Shi J, Deng G, Kong H, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017;27(12):1409–1421. doi:10.1038/cr.2017.129
  • Shi J, Deng G, Ma S, et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host Microbe. 2018;24(4):558–568.e7. doi:10.1016/j.chom.2018.08.006
  • Meng F, Yang H, Qu Z, et al. A Eurasian avian-like H1N1 swine influenza reassortant virus became pathogenic and highly transmissible due to mutations in its PA gene. Proc Natl Acad Sci U S A. 2022;119(34):e2203919119. doi:10.1073/pnas.2203919119
  • Gu W, Shi J, Cui P, et al. Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China. Emerg Microbes Infect. 2022;11(1):1174–1185. doi:10.1080/22221751.2022.2063076
  • Meng F, Chen Y, Song Z, et al. Continued evolution of the Eurasian avian-like H1N1 swine influenza viruses in China. Sci China Life Sci. 2023;66(2):269–282. doi:10.1007/s11427-022-2208-0
  • Cui P, Shi J, Yan C, et al. Analysis of avian influenza A (H3N8) viruses in poultry and their zoonotic potential, People’s Republic of China, September 2021 to May 2022. Euro Surveill. 2023;28(41):2200871. doi:10.2807/1560-7917.ES.2023.28.41.2200871
  • Tian J, Bai X, Li M, et al. Highly pathogenic avian influenza virus (H5N1) clade 2.3.4.4b introduced by wild birds, People’s Republic of China, 2021. Emerg infect Dis. 2023;29(7):1367–1375. doi:10.3201/eid2907.221149
  • Karo-Karo D, Bodewes R, Restuadi R, et al. Phylodynamics of highly pathogenic avian influenza A(H5N1) virus circulating in Indonesian poultry. Viruses. 2022;14(10):2216. doi:10.3390/v14102216
  • WHO. Avian Influenza A (H5N1) - Cambodia. Disease Outbreak News. 2023:https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON445.