2,221
Views
0
CrossRef citations to date
0
Altmetric
Emerging seasonal and pandemic influenza infections

A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage

, , , , , , , , & show all
Article: 2287682 | Received 11 Jun 2023, Accepted 20 Nov 2023, Published online: 30 Dec 2023

References

  • Chen W, Zhang X, Zhao W, et al. Environmental factors and spatiotemporal distribution characteristics of the global outbreaks of the highly pathogenic avian influenza H5N1. Environ Sci Pollut Res Int. 2022;29(29):44175–44185. doi:10.1007/s11356-022-19016-1
  • Cui P, Shi J, Wang C, et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect. 2022;11(1):1693–1704. doi:10.1080/22221751.2022.2088407
  • Potdar V, Brijwal M, Lodha R, et al. Identification of human case of avian influenza A(H5N1) infection, India. Emerg Infect Dis. 2022;28(6):1269–1273. doi:10.3201/eid2806.212246
  • World Health Organization. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003–2023. Available at https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who–2003-2023-14-july-2023 (2023).
  • Peng C, Zhao P, Chu J, et al. Characterization of four novel H5N6 avian influenza viruses with the internal genes from H5N1 and H9N2 viruses and experimental challenge of chickens vaccinated with current commercially available H5 vaccines. Transbound Emerg Dis. 2022;69(3):1438–1448. doi:10.1111/tbed.14110
  • Ye H, Zhang J, Sang Y, et al. Divergent reassortment and transmission dynamics of highly pathogenic avian influenza A(H5N8) virus in birds of China during 2021. Front Microbiol. 2022;13:913551. doi:10.3389/fmicb.2022.913551
  • Hu J, Peng P, Li J, et al. Single dose of bivalent H5 and H7 influenza virus-like particle protects chickens against highly pathogenic H5N1 and H7N9 avian influenza viruses. Front Vet Sci. 2021;8:774630. doi:10.3389/fvets.2021.774630
  • Wu P, Lu J, Zhang X, et al. Single dose of consensus hemagglutinin-based virus-like particles vaccine protects chickens against divergent H5 subtype influenza viruses. Front Immunol. 2017;8:1649. doi:10.3389/fimmu.2017.01649
  • Smith T, O'Kennedy MM, Wandrag DBR, et al. Efficacy of a plant-produced virus-like particle vaccine in chickens challenged with Influenza A H6N2 virus. Plant Biotechnol J. 2020;18(2):502-512. doi:10.1111/pbi.13219
  • Kong D, Chen T, Hu X, et al. Supplementation of H7N9 virus-like particle vaccine With recombinant epitope antigen confers full protection against antigenically divergent H7N9 virus in chickens. Front Immunol. 2022;13:785975. doi:10.3389/fimmu.2022.785975
  • Sun Y-x, Li Z-r, Zhang P-j, et al. A single vaccination of chimeric bivalent virus-like particle vaccine confers protection against H9N2 and H3N2 avian influenza in commercial broilers and allows a strategy of differentiating infected from vaccinated animals. Front Immunol. 2022;13:902515. doi:10.3389/fimmu.2022.902515
  • Abolnik C, Smith T, Wandrag DBR, et al. Dose immunogenicity study of a plant-produced influenza virus-like particle vaccine in layer hens. Heliyon. 2022;8(6):e09804. doi:10.1016/j.heliyon.2022.e09804
  • Buffin S, Peubez I, Barrière F, et al. Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine. 2019;37(46):6857–6867. doi:10.1016/j.vaccine.2019.09.057
  • Kim K-H, Li Z, Bhatnagar N, et al. Universal protection against influenza viruses by multi-subtype neuraminidase and M2 ectodomain virus-like particle. PLoS Pathog. 2022;18(8):e1010755. doi:10.1371/journal.ppat.1010755
  • Schwartzman LM, Cathcart AL, Pujanauski LM, et al. An intranasal virus-like particle vaccine broadly protects mice from multiple subtypes of influenza A virus. mBio. 2015;6(4):e01044. doi:10.1128/mBio.01044-15
  • Sączyńska V, Romanik-Chruścielewska A, Florys-Jankowska K, et al. Chitosan-based formulation of hemagglutinin antigens for oculo-nasal booster vaccination of chickens against influenza viruses. Veterinary Immunology and Immunopathology. Vet Immunol Immunopathol. 2022;247:110406. doi:10.1016/j.vetimm.2022.110406
  • Lu Y, Landreth S, Liu G, et al. Innate immunemodulator containing adjuvant formulated HA based vaccine protects mice from lethal infection of highly pathogenic avian influenza H5N1 virus. Vaccine. 2020;38(10):2387-2395. doi:10.1016/j.vaccine.2020.01.051
  • Tian X, Landreth S, Lu Y, et al. A replication-defective influenza virus harboring H5 and H7 hemagglutinins provides protection against H5N1 and H7N9 infection in mice. J Virol. 2021;95(3):e02154-20. doi:10.1128/JVI.02154-20
  • Ren Z, Zhao Y, Liu J, et al. Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine. 2018;36(40):5990–5998. doi:10.1016/j.vaccine.2018.08.053
  • Xue C, Tian G, Chen X, et al. Incorporation of conserved nucleoprotein into influenza virus-like particles could provoke a broad protective immune response in BALB/c mice and chickens. Virus Res. 2015;195:35–42.
  • Bhat S, Sood R, Shukla S, et al. A two dose immunization with an inactivated reassortant H5N2 virus protects chickens against lethal challenge with homologous 2.3.2.1 clade and heterologous 2.2 clade highly pathogenic avian influenza H5N1 viruses. Vet Microbiol. 2018;217:149–157. doi:10.1016/j.vetmic.2018.03.004
  • Roos A, Roozendaal R, Theeuwsen J, et al. Protection against H5N1 by multiple immunizations with seasonal influenza vaccine in mice is correlated with H5 cross-reactive antibodies. Vaccine. 2015;33(14):1739–1747. doi:10.1016/j.vaccine.2015.01.070
  • Smith D, Streatfield SJ, Acosta H, et al. A nanoemulsion-adjuvanted intranasal H5N1 influenza vaccine protects ferrets against homologous and heterologous H5N1 lethal challenge. Vaccine. 2019;37(42):6162–6170. doi:10.1016/j.vaccine.2019.08.071
  • Pushko P, Tumpey TM, Bu F, et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine. 2005;23(50):5751–5759. doi:10.1016/j.vaccine.2005.07.098
  • Engelsma M, Heutink R, Harders F, et al. Multiple introductions of reassorted highly pathogenic avian influenza H5Nx viruses clade 2.3.4.4b causing outbreaks in wild birds and poultry in The Netherlands, 2020-2021. Microbiol Spectr. 2022;10(2):e0249921. doi:10.1128/spectrum.02499-21
  • Lewis NS, Banyard AC, Whittard E, et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg Microbes Infect. 2021;10(1):148–151. doi:10.1080/22221751.2021.1872355
  • Li J, Fang Y, Qiu X, et al. Human infection with avian-origin H5N6 influenza a virus after exposure to slaughtered poultry. Emerg Microbes Infect. 2022;11(1):807–810. doi:10.1080/22221751.2022.2048971
  • Lai C-C, Cheng Y-C, Chen P-W, et al. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. J Biol Eng. 2019;13(1):78. doi:10.1186/s13036-019-0206-z
  • Ren Z, Ji X, Meng L, et al. H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Res. 2015;200:9–18. doi:10.1016/j.virusres.2015.01.007
  • Khurana S, Coyle EM, Manischewitz J, et al. AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ Vaccines. 2018;3(1):40. doi:10.1038/s41541-018-0076-2
  • Liu F, Sun X, Fairman J, et al. A cationic liposome–DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets. Virology. 2016;492:197–203. doi:10.1016/j.virol.2016.02.024
  • Zhou F, Hansen L, Pedersen G, et al. Matrix M adjuvanted H5N1 vaccine elicits broadly neutralizing antibodies and neuraminidase inhibiting antibodies in humans that correlate With In vivo protection. Front Immunol. 2021;12:747774. doi:10.3389/fimmu.2021.747774
  • Bullard BL, Weaver EA. Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel). 2021;9(3):257.
  • Miller SM, Cybulski V, Whitacre M, et al. Novel lipidated imidazoquinoline TLR7/8 adjuvants elicit influenza-specific Th1 immune responses and protect against heterologous H3N2 influenza challenge in mice. Front Immunol. 2020;11:406. doi:10.3389/fimmu.2020.00406
  • Bliss CM, Freyn AW, Caniels TG, et al. A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice. Mol Ther. 2022;30(5):2024–2047. doi:10.1016/j.ymthe.2022.01.011
  • Sączyńska V, Romanik-Chruścielewska A, Florys K, et al. Prime-boost vaccination with a novel hemagglutinin protein produced in bacteria induces neutralizing antibody responses against H5-subtype influenza viruses in commercial chickens. Front Immunol. 2019;10:2006. doi:10.3389/fimmu.2019.02006
  • de Jonge J, van Dijken H, de Heij F, et al. H7N9 influenza split vaccine with SWE oil-in-water adjuvant greatly enhances cross-reactive humoral immunity and protection against severe pneumonia in ferrets. NPJ Vaccines. 2020;5(1):38. doi:10.1038/s41541-020-0187-4
  • Li T, Chen J, Zheng Q, et al. Identification of a cross-neutralizing antibody that targets the receptor binding site of H1N1 and H5N1 influenza viruses. Nat Commun. 2022;13(1):5182. doi:10.1038/s41467-022-32926-5
  • Wong S-S, DeBeauchamp J, Zanin M, et al. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines. NPJ Vaccines. 2017;2(1):16. doi:10.1038/s41541-017-0017-5
  • Liu W-C, Nachbagauer R, Stadlbauer D, et al. Sequential immunization with live-attenuated chimeric hemagglutinin-based vaccines confers heterosubtypic immunity against influenza A viruses in a preclinical ferret model. Front Immunol. 2019;10:756. doi:10.3389/fimmu.2019.00756
  • Handabile C, Sekiya T, Nomura N, et al. Inactivated whole virus particle influenza vaccine induces anti-neuraminidase antibodies that may contribute to cross-protection against heterologous virus infection. Vaccines (Basel). 2022;10(5):804. doi:10.3390/vaccines10050804
  • Subbiah J, Oh J, Kim K-H, et al. A chimeric thermostable M2e and H3 stalk-based universal influenza A virus vaccine. NPJ Vaccines. 2022;7(1):68. doi:10.1038/s41541-022-00498-6
  • McMillan CLD, Cheung STM, Modhiran N, et al. Development of molecular clamp stabilized hemagglutinin vaccines for Influenza A viruses. NPJ Vaccines. 2021;6(1):135. doi:10.1038/s41541-021-00395-4
  • Shrestha A, Sadeyen J-R, Lukosaityte D, et al. Selectively targeting haemagglutinin antigen to chicken CD83 receptor induces faster and stronger immunity against avian influenza. NPJ Vaccines. 2021;6(1):90. doi:10.1038/s41541-021-00350-3
  • Deng L, Chang TZ, Wang Y, et al. Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proc Natl Acad Sci USA. 2018;115(33):E7758–E7767. doi:10.1073/pnas.1805713115
  • Pushko P, Tretyakova I, Hidajat R, et al. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens. Virology. 2017;501:176-182. doi:10.1016/j.virol.2016.12.001