1,007
Views
0
CrossRef citations to date
0
Altmetric
Drug Resistance and Novel Antimicrobial Agents

Outer membrane vesicles mediating horizontal transfer of the epidemic blaOXA-232 carbapenemase gene among Enterobacterales

, , , , , , , , & show all
Article: 2290840 | Received 05 Sep 2023, Accepted 29 Nov 2023, Published online: 22 Jan 2024

References

  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet (London, England). 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • Dong N, Yang X, Chan EWC, et al. Klebsiella species: taxonomy, hypervirulence and multidrug resistance. eBioMedicine. 2022;79:103998. doi:10.1016/j.ebiom.2022.103998
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440–458. doi:10.1128/CMR.00001-07
  • Pitout JDD, Peirano G, Kock MM, et al. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev. 2019;33(1):1–48.
  • Potron A, Rondinaud E, Poirel L, et al. Genetic and biochemical characterisation of OXA-232, a carbapenem- hydrolysing class D β-lactamase from Enterobacteriaceae. Int J Antimicrob Agents. 2013;41(4):325–329. doi:10.1016/j.ijantimicag.2012.11.007
  • Lutgring JD, Zhu W, de Man TJB, et al. Phenotypic and genotypic characterization of Enterobacteriaceae producing oxacillinase-48-like carbapenemases, United States. Emerg Infect Dis. 2018;24(4):700–709. doi:10.3201/eid2404.171377
  • Emeraud C, Birer A, Girlich D, et al. Polyclonal dissemination of OXA-232 carbapenemase-producing Klebsiella pneumoniae, France, 2013-2021. Emerg Infect Dis. 2022;28(11):2304–2307. doi:10.3201/eid2811.221040
  • Izdebski R, Baraniak A, Zabicka D, et al. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013–January 2017. J Antimicrob Chemother. 2018;73(3):620–625. doi:10.1093/jac/dkx457
  • Shen S, Han R, Yin D, et al. A nationwide genomic study of clinical Klebsiella pneumoniae carrying blaOXA-232 and rmtF in China. Microbiol Spectr. 2023;3:e0386322.
  • Kim YJ, Kim S, Kim J, et al. Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings. Clin Microbiol Infect. 2020;26(1):78–86. doi:10.1016/j.cmi.2019.05.008
  • Johnston C, Martin B, Fichant G, et al. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol. 2014;12(3):181–196. doi:10.1038/nrmicro3199
  • Chiang YN, Penadés JR, Chen J. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog. 2019;15(8):e1007878. doi:10.1371/journal.ppat.1007878
  • Toyofuku M, Schild S, Kaparakis-Liaskos M, et al. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol. 2023;21(7):415–430. doi:10.1038/s41579-023-00875-5
  • Chatterjee S, Mondal A, Mitra S, et al. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J Antimicrob Chemother. 2017;72(8):2201–2207. doi:10.1093/jac/dkx131
  • Dell’annunziata F, Dell’aversana C, Doti N, et al. Outer membrane vesicles derived from Klebsiella pneumoniae are a driving force for horizontal gene transfer. Int J Mol Sci. 2021;22(16): 8677. doi:10.3390/ijms22168677
  • Hua Y, Wang J, Huang M, et al. Outer membrane vesicles-transmitted virulence genes mediate the emergence of new antimicrobial-resistant hypervirulent Klebsiella pneumoniae. Emerg Microbes Infect. 2022;11(1):1281–1292. doi:10.1080/22221751.2022.2065935
  • Tang B, Yang A, Liu P, et al. Outer membrane vesicles transmitting blaNDM-1 mediate the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Antimicrob Agents Chemother. 2023;67(5):e0144422. doi:10.1128/aac.01444-22
  • Dell’annunziata F, Folliero V, Giugliano R, et al. Gene transfer potential of outer membrane vesicles of gram-negative bacteria. Int J Mol Sci. 2021;22(11):5985.
  • Loraine J, Heinz E, Almeida S, et al. Complement susceptibility in relation to genome sequence of recent Klebsiella pneumoniae isolates from Thai Hospitals. mSphere. 2018;3(6):1–15. doi:10.1128/mSphere.00537-18
  • Ding L, Shi Q, Han R, et al. Comparison of four carbapenemase detection methods for blaKPC-2 variants. Microbiol Spectr. 2021;9:e0095421. doi:10.1128/Spectrum.00954-21
  • Liu Y, Liu Q, Zhao L, et al. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1. J Extracell Vesicles. 2022;11(4):e12212. doi:10.1002/jev2.12212
  • Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(7):3084–3090. doi:10.1128/AAC.00929-10
  • Shen Z, Ding B, Ye M, et al. High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2017;72(7):1930–1936. doi:10.1093/jac/dkx066
  • Liu G, Beaton SE, Grieve AG, et al. Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. EMBO J. 2020;39(10):1–17.
  • Zhang Y, Yang X, Liu C, et al. Increased clonal dissemination of OXA-232-producing ST15 Klebsiella pneumoniae in Zhejiang, China from 2018 to 2021. Infect Dis Poverty. 2023;12(1):25. doi:10.1186/s40249-023-01051-w
  • Wu W, Feng Y, Tang G, et al. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32(2):e00115–18.
  • Li C, Jiang X, Yang T, et al. Genomic epidemiology of carbapenemase-producing Klebsiella pneumoniae in China. Genomics, Proteomics Bioinforma. 2022;20(6):1154–1167. doi:10.1016/j.gpb.2022.02.005
  • Tran F, Boedicker JQ. Plasmid characteristics modulate the propensity of gene exchange in bacterial vesicles. J Bacteriol. 2019;201(7):1–12. doi:10.1128/JB.00430-18
  • Yang X, Xie M, Xu Q, et al. Transmission of pLVPK-like virulence plasmid in Klebsiella pneumoniae mediated by an Incl1 conjugative helper plasmid. iScience. 2022;25(6):104428. doi:10.1016/j.isci.2022.104428
  • González LJ, Bahr G, Nakashige TG, et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol. 2016;12(7):516–522. doi:10.1038/nchembio.2083
  • Zhang X, Qian C, Tang M, et al. Carbapenemase-loaded outer membrane vesicles protect Pseudomonas aeruginosa by degrading imipenem and promoting mutation of antimicrobial resistance gene. Drug Resist Updat. 2023;68:100952. doi:10.1016/j.drup.2023.100952
  • Coluzzi C, Garcillán-Barcia MP, la Cruz Fd, et al. Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol Biol Evol. 2022;39(6):msac115. doi:10.1093/molbev/msac115