1,857
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Viral diversity in wild and urban rodents of Yunnan Province, China

, , , , , , , ORCID Icon & show all
Article: 2290842 | Received 30 Jul 2023, Accepted 29 Nov 2023, Published online: 30 Jan 2024

References

  • Mammal Diversity Database. Mammal Diversity Database. 2023. Available from: doi:10.5281/ZENODO.4139722
  • Armien B, Pascale J, Bayard V, et al. High seroprevalence of hantavirus infection on the Azuero peninsula of Panama. Am J Trop Med Hyg. 2004;70:682–687. doi:10.4269/ajtmh.2004.70.682
  • Brisse ME, Ly H. Hemorrhagic fever-causing arenaviruses: lethal pathogens and potent immune suppressors. Front Immunol. 2019;10:4–5. doi:10.3389/fimmu.2019.00372
  • Wu Z, Lu L, Du J, et al. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome. 2018;6:178. doi:10.1186/s40168-018-0554-9
  • Li X, Wang L, Liu P, et al. A novel potentially recombinant rodent coronavirus with a polybasic cleavage site in the spike protein. J Virol. 2021;95:e0117321.
  • Xiong Y-Q, You F-F, Chen X-J, et al. Detection and phylogenetic analysis of porcine bocaviruses carried by murine rodents and house shrews in China. Transbound Emerg Dis. 2019;66:259–267. doi:10.1111/tbed.13011
  • Morcatty TQ, Pereyra PER, Ardiansyah A, et al. Risk of viral infectious diseases from live bats, primates, rodents and carnivores for sale in indonesian wildlife markets. Viruses. 2022;14:2756. doi:10.3390/v14122756
  • Motro Y, Ghendler Y, Muller Y, et al. A comparison of trapping efficacy of 11 rodent traps in agriculture. Mammal Res. 2019;64:435–443. doi:10.1007/s13364-019-00424-7
  • Francis C. Field guide to the mammals of south-east Asia. 2nd ed. San Francisco, CA: Bloomsbury Publishing, 2019.
  • Twist Pan Viral Panel. Twist Bioscience. [accessed August 2023 29]. Available from https://www.twistbioscience.com/resources/product-sheet/twist-pan-viral-panel.
  • Mastriani E, Bienes KM, Wong G, et al. PIMGAVir and Vir-MinION: Two viral metagenomic pipelines for complete baseline analysis of 2nd and 3rd generation data. Viruses. 2022;14:1260. doi:10.3390/v14061260
  • Li D, Liu C-M, Luo R, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinforma Oxf Engl. 2015;31:1674–1676. doi:10.1093/bioinformatics/btv033
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol J Comput Mol Cell Biol. 2012;19:455–477. doi:10.1089/cmb.2012.0021
  • Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi:10.7717/peerj.2584
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. doi:10.1038/nmeth.3176
  • Shen W, Ren H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J Genet Genomics Yi Chuan Xue Bao. 2021;48:844–850. doi:10.1016/j.jgg.2021.03.006
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi:10.1038/nmeth.1923
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinforma Oxf Engl. 2009;25:2078–2079. doi:10.1093/bioinformatics/btp352
  • Bedre R. bioinfokit: bioinformatics data analysis and visualization toolkit; 2020.. doi:10.5281/zenodo.3747737
  • Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423. doi:10.1002/j.1538-7305.1948.tb01338.x
  • Magurran AE. Measuring biological diversity. Malden (Ma): Blackwell Pub; 2004.
  • Leray M, Knowlton N, Machida RJ. MIDORI2: a collection of quality controlled, preformatted, and regularly updated reference databases for taxonomic assignment of eukaryotic mitochondrial sequences. Environ DNA. 2022;4:894–907. doi:10.1002/edn3.303
  • Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–1166. doi:10.1093/bib/bbx108
  • Nguyen L-T, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi:10.1093/molbev/msu300
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi:10.1038/nmeth.4285
  • Samson S, Lord É, Makarenkov V. SimPlot++: a Python application for representing sequence similarity and detecting recombination. Bioinforma Oxf Engl. 2022;38:3118–3120. doi:10.1093/bioinformatics/btac287
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. doi:10.1007/BF01731581
  • KASSAMBARA A. rstatix. (2023). [accessed 2023 April 28]. Available from: https://github.com/kassambara/rstatix.
  • Wickham H. ggplot2: Elegant graphics for data analysis. New York (NY): Springer; 2009.
  • Rongen MC, van M. Chapter 1 Overview | Core Statistics in R. [accessed 2023 April 28]. Available from: https://cambiotraining.github.io/corestats-in-r/.
  • Pearson K. (1857–1936). On the theory of contingency and its relation to association and normal correlation.
  • Jones MS, Lukashov VV, Ganac RD, et al. Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. J Clin Microbiol. 2007;45:2144–2150. doi:10.1128/JCM.00174-07
  • Nasar F, Palacios G, Gorchakov RV, et al. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication. Proc Natl Acad Sci U S A. 2012;109:14622–14627. doi:10.1073/pnas.1204787109
  • Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–993. doi:10.1038/nature06536
  • Wu Z, Han Y, Liu B, et al. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. Microbiome. 2021;9:18. doi:10.1186/s40168-020-00965-z
  • van der Walt AJ, van Goethem MW, Ramond J-B, et al. Assembling metagenomes, one community at a time. BMC Genomics. 2017;18:521. doi:10.1186/s12864-017-3918-9
  • Wu Z, Han Y, Liu B, et al. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. Microbiome. 2021;9:7–9. doi:10.1186/s40168-020-00965-z
  • Du H, Zhang L, Zhang X, et al. Metagenome-assembled viral genomes analysis reveals diversity and infectivity of the RNA virome of gerbillinae species. Viruses. 2022;14:356. doi:10.3390/v14020356
  • Hassell JM, Begon M, Ward MJ, et al. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol. 2017;32:55–67. doi:10.1016/j.tree.2016.09.012
  • Mull N, Schexnayder A, Stolt A, et al. Effects of habitat management on rodent diversity, abundance, and virus infection dynamics. Ecol Evol. 2023;13:e10039. doi:10.1002/ece3.10039
  • Ecke F, Han BA, Hörnfeldt B, et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat Commun. 2022;13:7532. doi:10.1038/s41467-022-35273-7
  • Magnusson M, Ecke F, Khalil H, et al. Spatial and temporal variation of Hantavirus bank vole infection in managed forest landscapes. Ecosphere. 2015;6:art163. doi:10.1890/ES15-00039.1
  • Williams EP, Spruill-Harrell BM, Taylor MK, et al. Common themes in zoonotic spillover and disease emergence: lessons learned from bat- and rodent-borne RNA viruses. Viruses. 2021;13:1509. doi:10.3390/v13081509
  • Gibb R, Redding DW, Chin KQ, et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature. 2020;584:398–402. doi:10.1038/s41586-020-2562-8
  • García-Peña GE, Rubio AV, Mendoza H, et al. Land-use change and rodent-borne diseases: hazards on the shared socioeconomic pathways. Philos Trans R Soc B Biol Sci. 2021;376:20200362. doi:10.1098/rstb.2020.0362
  • Muylaert RL, Sabino-Santos G, Prist PR, et al. Spatiotemporal dynamics of Hantavirus cardiopulmonary syndrome transmission risk in Brazil. Viruses. 2019;11:1008. doi:10.3390/v11111008
  • Prist PR, Uriarte M, Fernandes K, et al. Climate change and sugarcane expansion increase Hantavirus infection risk. PLoS Negl Trop Dis. 2017;11:e0005705. doi:10.1371/journal.pntd.0005705
  • Prist PR, D´Andrea PS, Metzger JP. Landscape, climate and hantavirus cardiopulmonary syndrome outbreaks. EcoHealth. 2017;14:614–629. doi:10.1007/s10393-017-1255-8
  • Levine RS, Peterson AT, Yorita KL, et al. Ecological niche and geographic distribution of human Monkeypox in Africa. PLoS One. 2007;2:e176. doi:10.1371/journal.pone.0000176
  • Kenmoe S, Tchatchouang S, Ebogo-Belobo JT, et al. Systematic review and meta-analysis of the epidemiology of Lassa virus in humans, rodents and other mammals in sub-Saharan Africa. PLoS Negl Trop Dis. 2020;14:e0008589. doi:10.1371/journal.pntd.0008589
  • Wang J, Cheng S, Yi L, et al. Evidence for natural recombination between mink enteritis virus and canine parvovirus. Virol J. 2012;9:252. doi:10.1186/1743-422X-9-252
  • Kemenesi G, Dallos B, Görföl T, et al. Genetic diversity and recombination within bufaviruses: detection of a novel strain in Hungarian bats. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2015;33:288–292.
  • Summa M, Henttonen H, Maunula L. Human noroviruses in the faeces of wild birds and rodents-new potential transmission routes. Zoonoses Public Health. 2018;65:3–6. doi:10.1111/zph.12461
  • Tan SZK, Tan MZY, Prabakaran M. Saffold virus, an emerging human cardiovirus. Rev Med Virol. 2017;27:e1908. doi:10.1002/rmv.1908
  • Blinkova O, Kapoor A, Victoria J, et al. Cardioviruses are genetically diverse and cause common enteric infections in South Asian children. J Virol. 2009;83:4631–4641. doi:10.1128/JVI.02085-08
  • Naeem A, Hosomi T, Nishimura Y, et al. Genetic diversity of circulating Saffold viruses in Pakistan and Afghanistan. J Gen Virol. 2014;95:1945–1957. doi:10.1099/vir.0.066498-0
  • Wang L, Tang Q, Liang G. Rabies and rabies virus in wildlife in mainland China, 1990–2013. Int J Infect Dis. 2014;25:122–129. doi:10.1016/j.ijid.2014.04.016
  • Zhao Y, Qian A, Li Y, et al. Sequencing and analysis of G–gene of rabies virus strain from wild mous. Jilin Nong Ye Xue Xue Bao Acta Agric Univ Jilinensis. 2004;26:210–212, 216.
  • Lei Y, Wang X, Li H, et al. New animal hosts of rabies virus in mountain areas in Zhejiang province. Zhonghua Liu Xing Bing Xue Za Zhi Zhonghua Liuxingbingxue Zazhi. 2009;30:344–347.
  • Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008. doi:10.1093/sysbio/syw037