2,125
Views
0
CrossRef citations to date
0
Altmetric
Drug Resistance and Novel Antimicrobial Agents

Novel nitroxoline derivative combating resistant bacterial infections through outer membrane disruption and competitive NDM-1 inhibition

, , , , , , , , , & show all
Article: 2294854 | Received 04 Sep 2023, Accepted 11 Dec 2023, Published online: 30 Jan 2024

References

  • Nordmann, P, Poirel L, Walsh TR, et al. The emerging NDM carbapenemases. Trends Microbiol. 2011;19:588–595. doi:10.1016/j.tim.2011.09.005
  • Wang T, et al. Recent research and development of NDM-1 inhibitors. Eur J Med Chem. 2021;223:113667. doi:10.1016/j.ejmech.2021.113667
  • Wu W, Feng Y, Tang G, et al. NDM metallo-beta-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev; 2019;32(2).
  • Iredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ. 2016;352:h6420.
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21:538–582. doi:10.1128/CMR.00058-07
  • Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. J Antimicrob Chemother. 2010;65:2253–2254. doi:10.1093/jac/dkq273
  • Li Y, Qiu Y, Fang C, et al. Coexistence of bla(OXA-58) and bla(NDM-1) on a Novel Plasmid of GR59 from an Acinetobacter towneri isolate. Antimicrob Agents Chemother. 2022; 66:e0020622.
  • Zhang X. Human in check: new threat from superbugs equipped with NDM-1. Protein Cell. 2010;1:1051–1052. doi:10.1007/s13238-010-0134-7
  • Albur MS, Noel A, Bowker K, et al. The combination of colistin and fosfomycin is synergistic against NDM-1-producing Enterobacteriaceae in in vitro pharmacokinetic/pharmacodynamic model experiments. Int J Antimicrob Agents. 2015;46:560–567. doi:10.1016/j.ijantimicag.2015.07.019
  • Docobo-Perez F, et al. Efficacies of colistin and tigecycline in mice with experimental pneumonia due to NDM-1-producing strains of Klebsiella pneumoniae and Escherichia coli. Int J Antimicrob Agents. 2012;39:251–254. doi:10.1016/j.ijantimicag.2011.10.012
  • El-Sayed Ahmed MAE, Zhong L-L, Shen C, et al. Colistin and its role in the Era of antibiotic resistance: an extended review (2000-2019). Emerg Microbes Infect. 2020;9:868–885. doi:10.1080/22221751.2020.1754133
  • Hao J, Zhang B, Deng J, et al. Emergence of a hypervirulent tigecycline-resistant klebsiella pneumoniae strain Co-producing bla (NDM-1) and bla (KPC-2) With an uncommon sequence type ST464 in southwestern China. Front Microbiol. 2022;13:868705. doi:10.3389/fmicb.2022.868705
  • He T, Wang R, Liu D, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol. 2019;4:1450–1456. doi:10.1038/s41564-019-0445-2
  • Jiang S, Wang X, Yu H, et al. Molecular antibiotic resistance mechanisms and co-transmission of the mcr-9 and metallo-beta-lactamase genes in carbapenem-resistant Enterobacter cloacae complex. Front Microbiol. 2022;13:1032833. doi:10.3389/fmicb.2022.1032833
  • Zheng B, Dong H, Xu H, et al. Coexistence of MCR-1 and NDM-1 in clinical Escherichia coli isolates. Clin Infect Dis. 2016;63:1393–1395. doi:10.1093/cid/ciw553
  • Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–216. doi:10.1038/s41573-020-00114-z
  • Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev. 2020;40:586–605. doi:10.1002/med.21627
  • Fuchs F, Becerra-Aparicio F, Xanthopoulou K, et al. In vitro activity of nitroxoline against carbapenem-resistant Acinetobacter baumannii isolated from the urinary tract. J Antimicrob Chemother. 2022;77:1912–1915. doi:10.1093/jac/dkac123
  • Pelletier C, Prognon P, Bourlioux P. Roles of divalent cations and pH in mechanism of action of nitroxoline against Escherichia coli strains. Antimicrob Agents Chemother. 1995;39:707–713. doi:10.1128/AAC.39.3.707
  • Latrache H, Bourlioux P, Karroua M, et al. Effects of subinhibitory concentrations of nitroxoline on the surface properties of Escherichia coli. Folia Microbiol (Praha). 2000;45:485–490. doi:10.1007/BF02818714
  • Abouelhassan Y, Yang Q, Yousaf H, et al. Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria. Int J Antimicrob Agents. 2017;49:247–251. doi:10.1016/j.ijantimicag.2016.10.017
  • Wijma RA, Huttner A, Koch BCP, et al. Review of the pharmacokinetic properties of nitrofurantoin and nitroxoline. J Antimicrob Chemother. 2018;73:2916–2926. doi:10.1093/jac/dky255
  • Proschak A, Martinelli G, Frank D, et al. Nitroxoline and its derivatives are potent inhibitors of metallo-beta-lactamases. Eur J Med Chem. 2022;228:113975. doi:10.1016/j.ejmech.2021.113975
  • Principe L, Vecchio G, Sheehan G, et al. Zinc chelators as carbapenem adjuvants for metallo-beta-lactamase-producing bacteria: in vitro and in vivo evaluation. Microb Drug Resist. 2020;26:1133–1143. doi:10.1089/mdr.2020.0037
  • CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Vol. Clinical Laboratory Standards Institute M07-A09 (2012).
  • Shang D, Zhang Q, Dong W, et al. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Acta Biomater. 2016;33:153–165. doi:10.1016/j.actbio.2016.01.019
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi:10.1016/j.softx.2015.06.001
  • MacNair CR, Stokes JM, Carfrae LA, et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun. 2018;9:458. doi:10.1038/s41467-018-02875-z
  • Clifton LA, Skoda MWA, Le Brun AP, et al. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir. 2015;31:404–412. doi:10.1021/la504407v
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–5054. doi:10.1128/AAC.00774-09
  • King AM, Reid-Yu SA, Wang W, et al. Aspergillomarasmine A overcomes metallo-beta-lactamase antibiotic resistance. Nature. 2014;510:503–506. doi:10.1038/nature13445
  • Guo Y, Wang J, Niu G, et al. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell. 2011;2:384–394. doi:10.1007/s13238-011-1055-9
  • Darby EM, Trampari E, Siasat P, et al. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 2023;21:280–295. doi:10.1038/s41579-022-00820-y
  • Jernigan JA, Hatfield KM, Wolford H, et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012-2017. N ENGL J MED. 2020;382:1309–1319. doi:10.1056/NEJMoa1914433
  • Tarin-Pello A, Suay-Garcia B, Perez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther. 2022;20:1095–1108. doi:10.1080/14787210.2022.2078308
  • Walsh C. Where will new antibiotics come from? Nat Rev Microbiol. 2003;1:65–70. doi:10.1038/nrmicro727
  • Liu Y, Tong Z, Shi J, et al. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics. 2021;11:4910–4928. doi:10.7150/thno.56205
  • Boyd NK, Teng C, Frei CR. Brief overview of approaches and challenges in new antibiotic development: a focus on drug repurposing. Front Cell Infect Microbiol. 2021;11:684515. doi:10.3389/fcimb.2021.684515
  • Kresken M, Korber-Irrgang B. In vitro activity of nitroxoline against Escherichia coli urine isolates from outpatient departments in Germany. Antimicrob Agents Chemother. 2014;58:7019–7020. doi:10.1128/AAC.03946-14
  • Naber KG, Niggemann H, Stein G, et al. Review of the literature and individual patients’ data meta-analysis on efficacy and tolerance of nitroxoline in the treatment of uncomplicated urinary tract infections. BMC Infect Dis. 2014;14:628. doi:10.1186/s12879-014-0628-7
  • Begic G, Petkovic Didovic M, Lucic Blagojevic S, et al. Adhesion of oral bacteria to commercial d-PTFE membranes: polymer microstructure makes a difference. Int J Mol Sci. 2022;23.
  • Sobke A, Klinger M, Hermann B, et al. The urinary antibiotic 5-nitro-8-hydroxyquinoline (Nitroxoline) reduces the formation and induces the dispersal of Pseudomonas aeruginosa biofilms by chelation of iron and zinc. Antimicrob Agents Chemother. 2012;56:6021–6025. doi:10.1128/AAC.01484-12
  • Fraser RS, Creanor J. The mechanism of inhibition of ribonucleic acid synthesis by 8-hydroxyquinoline and the antibiotic lomofungin. Biochem J. 1975;147:401–410. doi:10.1042/bj1470401
  • Vidaillac C, Benichou L, Duval RE. In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2012;56:4856–4861. doi:10.1128/AAC.05996-11
  • Petrosillo N, Ioannidou E, Falagas ME. Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin Microbiol Infect. 2008;14:816–827. doi:10.1111/j.1469-0691.2008.02061.x
  • Deris ZZ, Yu HH, Davis K, et al. The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2012;56:5103–5112. doi:10.1128/AAC.01064-12
  • Ling Z, Yin W, Shen Z, et al. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother. 2020;75:3087–3095. doi:10.1093/jac/dkaa205
  • Gonzalez LJ, Bahr G, Nakashige TG, et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-beta-lactamase. Nat Chem Biol. 2016;12:516–522. doi:10.1038/nchembio.2083
  • Martinez MMB, Bonomo RA, Vila AJ, et al. On the offensive: the role of outer membrane vesicles in the successful dissemination of New Delhi Metallo-Beta-Lactamase (NDM-1). mBio. 2021;12:e0183621.
  • Yoshizumi A, Ishii Y, Kimura S, et al. Efficacies of calcium-EDTA in combination with imipenem in a murine model of sepsis caused by Escherichia coli with NDM-1 beta-lactamase. J Infect Chemother. 2013;19:992–995. doi:10.1007/s10156-012-0528-y
  • Wang R, Lai T-P, Gao P, et al. Bismuth antimicrobial drugs serve as broad-spectrum metallo-beta-lactamase inhibitors. Nat Commun. 2018;9:439. doi:10.1038/s41467-018-02828-6
  • Cheng Z, Thomas PW, Ju L, et al. Evolution of New Delhi metallo-beta-lactamase (NDM) in the clinic: effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J Biol Chem. 2018;293:12606–12618. doi:10.1074/jbc.RA118.003835
  • Bahr G, Vitor-Horen L, Bethel CR, et al. Clinical evolution of New Delhi metallo-beta-lactamase (NDM) optimizes resistance under Zn(II) deprivation. Antimicrob Agents Chemother. 2018; 62.