1,091
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetic characteristics and potential pathogenic agents in Campylobacter upsaliensis based on genomic analysis

ORCID Icon, , , , , , , , , , , & ORCID Icon show all
Article: 2294857 | Received 22 Oct 2023, Accepted 11 Dec 2023, Published online: 24 Jan 2024

References

  • Porte L, Perez C, Barbe M, et al. Campylobacter spp. prevalence in Santiago, Chile: a study based on molecular detection in clinical stool samples from 2014 to 2019. Pathogens. 2023 Mar 22;12(3).
  • Scallan Walter EJ, Crim SM, Bruce BB, et al. Incidence of campylobacter-associated guillain-barre syndrome estimated from health insurance data. Foodborne Pathog Dis. 2020 Jan;17(1):23–28.
  • Costa D, Iraola G. Pathogenomics of emerging campylobacter species. Clin Microbiol Rev. 2019 Sep 18;32(4).
  • Zhang M, Li Q, He L, et al. Association study between an outbreak of Guillain-Barre syndrome in Jilin, China, and preceding Campylobacter jejuni infection. Foodborne Pathog Dis. 2010 Aug;7(8):913–919.
  • Battersby T, Whyte P, Bolton DJ. The pattern of Campylobacter contamination on broiler farms; external and internal sources. J Appl Microbiol. 2016 Apr;120(4):1108–1118.
  • Tinevez C, Velardo F, Ranc AG, et al. Retrospective multicentric study on campylobacter spp. bacteremia in France: the campylobacteremia study. Clin Infect Dis. 2022 Sep 10;75(4):702–709.
  • Man SM. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol. 2011 Oct 25;8(12):669–685.
  • Marks SL, Rankin SC, Byrne BA, et al. Enteropathogenic bacteria in dogs and cats: diagnosis, epidemiology, treatment, and control. J Vet Intern Med. 2011 Nov-Dec;25(6):1195–1208.
  • Ju C, Ma Y, Zhang B, et al. Prevalence, genomic characterization and antimicrobial resistance of Campylobacter spp. isolates in pets in Shenzhen, China. Front Microbiol. 2023;14:1152719.
  • Takako T, Elpita T, Hiroyuki S, et al. Prevalence of campylobacter spp. in raccoon dogs and badgers in miyazaki prefecture, Japan. EcoHealth. 2021 Jun;18(2):241–249.
  • Prasad KN, Pradhan S, Nag VL. Guillain-Barre syndrome and Campylobacter infection. Southeast Asian J Trop Med Public Health. 2001 Sep;32(3):527–530.
  • Bourke B, Chan VL, Sherman P. Campylobacter upsaliensis: waiting in the wings. Clin Microbiol Rev. 1998 Jul;11(3):440–449.
  • Carter JE, Cimolai N. Hemolytic-uremic syndrome associated with acute Campylobacter upsaliensis gastroenteritis. Nephron. 1996;74(2):489.
  • Ohkoshi Y, Sato T, Murabayashi H, et al. Campylobacter upsaliensis isolated from a giant hepatic cyst. J Infect Chemother. 2020 Jul;26(7):752–755.
  • Nakamura I, Omori N, Umeda A, et al. First case report of fatal sepsis due to Campylobacter upsaliensis. J Clin Microbiol. 2015 Feb;53(2):713–715.
  • Couturier BA, Hale DC, Couturier MR. Association of Campylobacter upsaliensis with persistent bloody diarrhea. J Clin Microbiol. 2012 Nov;50(11):3792–3794.
  • Karama M, Kambuyi K, Cenci-Goga BT, et al. Occurrence and antimicrobial resistance profiles of campylobacter Jejuni, campylobacter coli, and campylobacter upsaliensis in beef cattle on cow-calf operations in South Africa. Foodborne Pathog Dis. 2020 Jul;17(7):440–446.
  • Morita D, Arai H, Isobe J, et al. Whole-Genome and plasmid comparative analysis of campylobacter jejuni from human patients in toyama, Japan, from 2015 to 2019. Microbiol Spectr. 2023 Feb 14;11(1):e0265922.
  • Maki JJ, Howard M, Connelly S, et al. Species delineation and comparative genomics within the campylobacter ureolyticus complex. J Clin Microbiol. 2023;61(5):e0004623.
  • Zhang M, Yang X, Liu H, et al. Whole-Genome sequence of microcystis aeruginosa TAIHU98, a nontoxic bloom-forming strain isolated from taihu lake, china. Genome Announc. 2013 May 23;1(3).
  • Frank JA, Reich CI, Sharma S, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol. 2008 Apr;74(8):2461–2470.
  • Zhou G, Liang H, Gu Y, et al. Comparative genomics of Helicobacter pullorum from different countries. Gut Pathog. 2020 Dec 10;12(1):56.
  • Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736.
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul 15;30(14):2068–2069.
  • Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 2012 Sep;40(16):e126.
  • Cantalapiedra CP, Hernandez-Plaza A, Letunic I, et al. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021 Dec 9;38(12):5825–5829.
  • Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020 Jan 8;48(D1):D517–D525.
  • Doster E, Lakin SM, Dean CJ, et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020 Jan 8;48(D1):D561–D569.
  • Liu B, Zheng D, Jin Q, et al. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019 Jan 8;47(D1):D687–D692.
  • Pritchard L, Glover RH, Humphris S, et al. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8(1):12–24.
  • Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015 Nov 15;31(22):3691–3693.
  • Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.
  • Fu L, Niu B, Zhu Z, et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012 Dec 1;28(23):3150–3152.
  • Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15.
  • Rozewicki J, Li S, Amada KM, et al. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 2019 Jul 2;47(W1):W5–W10.
  • Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009 Jul;26(7):1641–1650.
  • Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012 Dec 1;61(6):1061–1067.
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021 Jul 2;49(W1):W293–W296.
  • Team RC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2023.
  • Somroop S, Hatanaka N, Awasthi SP, et al. Campylobacter upsaliensis isolated from dogs produces high titer of cytolethal distending toxin. J Vet Med Sci. 2017 Mar 28;79(3):683–691.
  • Liang H, Wen Z, Li Y, et al. Comparison of the filtration culture and multiple real-time PCR examination for campylobacter spp. from stool specimens in diarrheal patients. Front Microbiol. 2018;9:2995.
  • Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126–19131.
  • Gemmell MR, Berry S, Mukhopadhya I, et al. Comparative genomics of Campylobacter concisus: Analysis of clinical strains reveals genome diversity and pathogenic potential. Emerg Microbes Infect. 2018 Jun 26;7(1):116.
  • Liu F, Ma R, Tay CYA, et al. Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active Crohn's disease. Emerg Microbes Infect. 2018 Apr 11;7(1):64.
  • Gourmelon M, Boukerb AM, Nabi N, et al. Genomic diversity of campylobacter lari group isolates from Europe and Australia in a One health context. Appl Environ Microbiol. 2022 Dec 13;88(23):e0136822.
  • Matsunami H, Yoon YH, Imada K, et al. Structure of the bacterial flagellar hook cap provides insights into a hook assembly mechanism. Commun Biol. 2021 Nov 16;4(1):1291.
  • Huang L, Zhao L, Liu W, et al. Dual RNA-Seq unveils pseudomonas plecoglossicida htpG gene functions during host-pathogen interactions With epinephelus coioides. Front Immunol. 2019;10:984.
  • Kortright KE, Done RE, Chan BK, et al. Selection for phage resistance reduces virulence of shigella flexneri. Appl Environ Microbiol. 2022 Jan 25;88(2):e0151421.
  • Seregina TA, Petrushanko IY, Shakulov RS, et al. Na,K-ATPase acts as a beta-amyloid receptor triggering Src kinase activation. Cells. 2022 Aug 27;11(17).
  • Lai CK, Chen YA, Lin CJ, et al. Molecular mechanisms and potential clinical applications of campylobacter jejuni cytolethal distending toxin. Front Cell Infect Microbiol. 2016;6:9.
  • Smith JL, Bayles DO. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol. 2006 Oct-Dec;32(4):227–248.
  • Yeh JY, Lin HJ, Kuo CJ, et al. Campylobacter jejuni cytolethal distending toxin C exploits lipid rafts to mitigate helicobacter pylori-induced pathogenesis. Front Cell Dev Biol. 2020;8:617419.
  • Sałamaszyńska-Guz A, Rasmussen PK, Murawska M, et al. Campylobacter jejuni virulence factors identified by modulating their synthesis on ribosomes with altered rRNA methylation. Front Cell Infect Microbiol. 2021;11:803730.