2,182
Views
0
CrossRef citations to date
0
Altmetric
Tuberculosis(TB)-what is new

Transcriptional profiling of human peripheral blood mononuclear cells in household contacts of pulmonary tuberculosis patients provides insights into mechanisms of Mycobacterium tuberculosis control and elimination

, , , , , , , , , , & show all
Article: 2295387 | Received 16 Jul 2023, Accepted 12 Dec 2023, Published online: 30 Dec 2023

References

  • Global tuberculosis report. https://www.who.int/publications-detail-redirect/9789240083851; 2023.
  • Horsburgh CR, Rubin EJ. Clinical practice. Latent tuberculosis infection in the United States. N Engl J Med. 2011;364(15):1441–1448. doi:10.1056/NEJMcp1005750
  • Richeldi L. An update on the diagnosis of tuberculosis infection. Am J Respir Crit Care Med. 2006;174(7):736–742. doi:10.1164/rccm.200509-1516PP
  • Lalvani A, Pareek M. Interferon gamma release assays: principles and practice. Enferm Infecc Microbiol Clin. 2010;28(4):245–252. doi:10.1016/j.eimc.2009.05.012
  • Diel R, Loddenkemper R, Nienhaus A. Evidence-based comparison of commercial interferon-gamma release assays for detecting active TB: a metaanalysis. Chest. 2010;137(4):952–968. doi:10.1378/chest.09-2350
  • Walzl G, Ronacher K, Hanekom W, et al. Immunological biomarkers of tuberculosis. Nat Rev Immunol. 2011;11(5):343–354. doi:10.1038/nri2960
  • Dheda K, Schwander SK, Zhu B, et al. The immunology of tuberculosis: from bench to bedside. Respirology. 2010;15(3):433–450. doi:10.1111/j.1440-1843.2010.01739.x
  • Marais BJ, Raviglione MC, Donald PR, et al. Scale-up of services and research priorities for diagnosis, management, and control of tuberculosis: a call to action. Lancet. 2010;375(9732):2179–2191. doi:10.1016/S0140-6736(10)60554-5
  • Barry CE, 3rd, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009;7(12):845–855. doi:10.1038/nrmicro2236
  • Luo Y, Xue Y, Mao L, et al. Activation phenotype of mycobacterium tuberculosis-specific CD4+ T cells promoting the discrimination between active tuberculosis and latent tuberculosis infection. Front Immunol. 2021;12:721013), doi:10.3389/fimmu.2021.721013
  • Thuong NTT, Dunstan SJ, Chau TTH, et al. Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles. PLoS Pathog. 2008;4(12):e1000229), doi:10.1371/journal.ppat.1000229
  • Jacobsen M, Repsilber D, Gutschmidt A, et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl). 2007;85(6):613–621. doi:10.1007/s00109-007-0157-6
  • Albayrak N, Dirix V, Aerts L, et al. Differential expression of maturation and activation markers on NK cells in patients with active and latent tuberculosis. J Leukoc Biol. 2022;111(5):1031–1042.
  • Zhao M, Shen S, Xue C. A Novel m1A-Score Model Correlated With the Immune Microenvironment Predicts Prognosis in Hepatocellular Carcinoma. Front Immunol. 2022;13:805967), doi:10.3389/fimmu.2022.805967
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucl Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Ross JM, Xie Y, Wang Y, et al. Estimating the population at high risk for tuberculosis through household exposure in high-incidence countries: a model-based analysis. EClinicalMed. 2021;42:101206), doi:10.1016/j.eclinm.2021.101206
  • Soysal A, Bakir M. T-SPOT.TB assay usage in adults and children. Expert Rev Mol Diagn. 2011;11(6):643–660. doi:10.1586/erm.11.46
  • Shao L, Zhang W, Zhang S, et al. Potent immune responses of Ag-specific Vgamma2Vdelta2+ T cells and CD8+ T cells associated with latent stage of Mycobacterium tuberculosis coinfection in HIV-1-infected humans. AIDS. 2008;22(17):2241–2250. doi:10.1097/QAD.0b013e3283117f18
  • Wang S, Diao N, Lu C, et al. Evaluation of the diagnostic potential of IP-10 and IL-2 as biomarkers for the diagnosis of active and latent tuberculosis in a BCG-vaccinated population. PLoS One. 2012;7(12):e51338.
  • Zhang S, Shao L, Mo L, Chen J, Wang F, Meng C, Zhong M, Qiu L, Wu M, Weng X et al: Evaluation of gamma interferon release assays using Mycobacterium tuberculosis antigens for diagnosis of latent and active tuberculosis in Mycobacterium bovis BCG-vaccinated populations. Clinl Vaccine Immunol CVI 2010, 17(12):1985-1990. doi:10.1128/CVI.00294-10
  • Lalvani A. Counting antigen-specific T cells: a new approach for monitoring response to tuberculosis treatment? Clin Infect Dis. 2004;38(5):757–759. doi:10.1086/381763
  • Carrara S, Vincenti D, Petrosillo N, et al. Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis. 2004;38(5):754–756. doi:10.1086/381754
  • Pathan AA, Wilkinson KA, Klenerman P, et al. Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol. 2001;167(9):5217–5225. doi:10.4049/jimmunol.167.9.5217
  • Lee SW, Lee SH, Yim JJ. Serial interferon-gamma release assays after chemoprophylaxis in a tuberculosis outbreak cohort. Infection. 2012;40(4):431–435.
  • Chee CB, KhinMar KW, Gan SH, et al. Latent tuberculosis infection treatment and T-cell responses to Mycobacterium tuberculosis-specific antigens. Am J Respir Crit Care Med. 2007;175(3):282–287. doi:10.1164/rccm.200608-1109OC
  • Wilkinson KA, Kon OM, Newton SM, et al. Effect of treatment of latent tuberculosis infection on the T cell response to Mycobacterium tuberculosis antigens. J Infect Dis. 2006;193(3):354–359. doi:10.1086/499311
  • Theron G, Peter J, Lenders L, et al. Correlation of Mycobacterium tuberculosis specific and non-specific quantitative Th1 T-cell responses with bacillary load in a high burden setting. PLoS One. 2012;7(5):e37436), doi:10.1371/journal.pone.0037436
  • Zhong Z, Wen Z, Darnell JE. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264(5155):95–98. doi:10.1126/science.8140422
  • Zeng G, Zhang G, Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol. 2018;15(3):206–215. doi:10.1038/cmi.2017.115
  • Lyadova IV, Panteleev AV. Th1 and Th17 cells in tuberculosis: protection, pathology, and biomarkers. Mediators Inflamm. 2015: 854507.
  • Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev. 2010;21(6):455–462. doi:10.1016/j.cytogfr.2010.10.004
  • Shen H, Chen ZW. The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol. 2018;15(3):216–225. doi:10.1038/cmi.2017.128
  • Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med. 2019;216(3):556–570. doi:10.1084/jem.20181776
  • Nisa A, Kipper FC, Panigrahy D, et al. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol. 2022;323(5):C1444–C1474.
  • Wufuer D, Li Y, Aierken H, et al. Bioinformatics-led discovery of ferroptosis-associated diagnostic biomarkers and molecule subtypes for tuberculosis patients. Eur J Med Res. 2023;28(1):445), doi:10.1186/s40001-023-01371-5
  • Geng S, Hao P, Wang D, et al. Zinc oxide nanoparticles have biphasic roles on Mycobacterium-induced inflammation by activating autophagy and ferroptosis mechanisms in infected macrophages. Microb Pathog. 2023;180:106132), doi:10.1016/j.micpath.2023.106132
  • Jagatia H, Tsolaki AG. The role of complement system and the immune response to tuberculosis infection. Medicina (Kaunas). 2021;57(2.
  • Castillo EF, Dekonenko A, Arko-Mensah J, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci USA. 2012;109(46):E3168–E3176.
  • Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150(4):803–815.
  • Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149–160. doi:10.1002/path.2287
  • D'Haens G, Daperno M. Advances in biologic therapy for ulcerative colitis and Crohn's disease. Curr Gastroenterol Rep. 2006;8(6):506–512. doi:10.1007/s11894-006-0041-5
  • Jacobs M, Brown N, Allie N, et al. Tumor necrosis factor receptor 2 plays a minor role for mycobacterial immunity. Pathobiology. 2000;68(2):68–75. doi:10.1159/000028116
  • Ai J-W, Zhang H, Zhou Z, et al. Gene expression pattern analysis using dual-color RT-MLPA and integrative genome-wide association studies of eQTL for tuberculosis suscepitibility. Respir Res. 2021;22(1):23), doi:10.1186/s12931-020-01612-9
  • Jenum S, Dhanasekaran S, Lodha R, et al. Approaching a diagnostic point-of-care test for pediatric tuberculosis through evaluation of immune biomarkers across the clinical disease spectrum. Sci Rep. 2016;6:18520), doi:10.1038/srep18520
  • Zhang N, Luo X, Huang J, et al. The landscape of different molecular modules in an immune microenvironment during tuberculosis infection. Brief Bioinform. 2021;22(5.
  • Yu EA, John SH, Tablante EC, et al. Host transcriptional responses following ex vivo re-challenge with Mycobacterium tuberculosis vary with disease status. PLoS One. 2017;12(10):e0185640.