1,271
Views
0
CrossRef citations to date
0
Altmetric
Emerging seasonal and pandemic influenza infections

Detection and phylogenetic analysis of contemporary H14N2 Avian influenza A virus in domestic ducks in Southeast Asia (Cambodia)

, , , , , , , , , , , , , , , & ORCID Icon show all
Article: 2297552 | Received 02 Oct 2023, Accepted 17 Dec 2023, Published online: 17 Apr 2024

References

  • Olsen B, Munster VJ, Wallensten A, et al. Global patterns of influenza a virus in wild birds. Science. 2006;312(5772):384–388. doi:10.1126/science.1122438
  • Viruses GCfHNaRI. Role for migratory wild birds in the global spread of avian influenza H5N8. Science. 2016;354(6309):213–217. doi:10.1126/science.aaf8852
  • Poen MJ, Bestebroer TM, Vuong O, et al. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Euro Surveill. 2018 Jan;23(4):17-00449. doi:10.2807/1560-7917.ES.2018.23.4.17-00449
  • Bodewes R, Kuiken T. Advances in virus research. Adv Virus Res. 2018;100:279–307. doi:10.1016/bs.aivir.2017.10.007
  • Verhagen JH, Lexmond P, Vuong O, et al. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; towards improvement of surveillance programs. PLoS One. 2017;12(3):e0173470.
  • Wille M, Barr IG. Resurgence of avian influenza virus. Science. 2022;376(6592):459–460. doi:10.1126/science.abo1232
  • Olson SH, Parmley J, Soos C, et al. Sampling strategies and biodiversity of influenza A subtypes in wild birds. PLoS One. 2014;9(3):e90826, doi:10.1371/journal.pone.0090826
  • Wille M, Holmes EC. The ecology and evolution of influenza viruses. Cold Spring Harb Perspect Med. 2020 Jul 1;10(7):a038489. doi:10.1101/cshperspect.a038489.
  • Kawaoka Y, Yamnikova S, Chambers TM, et al. Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology. 1990;179(2):759–767. doi:10.1016/0042-6822(90)90143-F
  • Nolting J, Fries AC, Slemons RD, et al. Recovery of H14 influenza A virus isolates from sea ducks in the western hemisphere. PLoS Curr. 2012 Jan;26(4):RRN1290.
  • Boyce WM, Schobel S, Dugan VG, et al. Complete genome sequence of a reassortant H14N2 avian influenza virus from California. Genome Announc. 2013;1(4).
  • Ramey AM, Poulson RL, Gonzalez-Reiche AS, et al. Evidence for seasonal patterns in the relative abundance of avian influenza virus subtypes in blue-winged teal (Anas discors). J Wildl Dis. 2014;50(4):916–922. doi:10.7589/2013-09-232
  • Latorre-Margalef N, Ramey AM, Fojtik A, et al. Serologic evidence of influenza A (H14) virus introduction into North America. Emerg Infect Dis. 2015;21(12):2257–2259. doi:10.3201/eid2112.150413
  • Dubovitskiy N, Derko A, Sobolev I, et al. Virological and genetic characterization of the unusual avian influenza H14Nx viruses in the Northern Asia. Viruses. 2023 Mar 11;15(3):734. doi:10.3390/v15030734
  • Goutard FL, Binot A, Duboz R, et al. How to reach the poor? Surveillance in low-income countries, lessons from experiences in Cambodia and Madagascar. Prev Vet Med. 2015 Jun 1;120(1):12–26. doi:10.1016/j.prevetmed.2015.02.014
  • Horwood PF, Horm SV, Suttie A, et al. Co-circulation of influenza A H5, H7, and H9 viruses and Co-infected poultry in live bird markets, Cambodia. Emerg Infect Dis. 2018;24(2):352–355. doi:10.3201/eid2402.171360
  • Edwards KM, Siegers JY, Wei X, et al. Detection of clade 2.3.4.4b avian influenza A(H5N8) virus in Cambodia, 2021. Emerg Infect Dis. 2023;29(1):170–174. doi:10.3201/eid2901.220934
  • Um S, Siegers JY, Sar B, et al. Human infection with avian influenza A(H9N2) virus, Cambodia, February 2021 virus, Cambodia, 2021. Emerg Infect Dis. 2021;27(10):2742–2745. doi:10.3201/eid2710.211039
  • Suttie A, Tok S, Yann S, et al. Diversity of A(H5N1) clade 2.3.2.1c avian influenza viruses with evidence of reassortment in Cambodia, 2014-2016. PLoS One. 2019;14(12):e0226108.
  • Suttie A, Tok S, Yann S, et al. The evolution and genetic diversity of avian influenza A(H9N2) viruses in Cambodia, 2015 - 2016. PLoS One. 2019;14(12):e0225428.
  • Suttie A, Yann S, Tum YP, et al. Detection of Low pathogenicity influenza A(H7N3) virus during duck mortality event, Cambodia, 2017. Emerg Infect Dis. 2018;24(6):1103–1107.
  • Horm SV, Tarantola A, Rith S, et al. Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections. Emerg Microbes Infect. 2016;5(7):e70.
  • Siegers JY, Dhanasekaran V, Xie R, et al. Genetic and antigenic characterization of an influenza A(H3N2) outbreak in Cambodia and the greater Mekong subregion during the COVID-19 pandemic, 2020. J Virol. 2021;95(24):e0126721.
  • Zhou B, Donnelly ME, Scholes DT, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza a viruses. J Virol. 2009;83(19):10309–10313. doi:10.1128/JVI.01109-09
  • Thielen P. Influenza whole genome sequencing with integrated indexing on Oxford Nanopore Platforms. 2022 [cited]. doi:10.17504/protocols.io.kxygxm7yzl8j/v1.
  • Shepard SS, Meno S, Bahl J, et al. Erratum to: viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genomics. 2016;17(1):801), doi:10.1186/s12864-016-3138-8
  • Shu Y, McCauley J. GISAID: global initiative on sharing all influenza data – from vision to reality. Eurosurveillance. 2017;22(13):30494.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi:10.1093/molbev/mst010
  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi:10.1093/bioinformatics/btp348
  • Price MN, Dehal PS, Arkin AP. Fasttree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. doi:10.1371/journal.pone.0009490
  • Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic Era. Mol Biol Evol. 2020;37(5):1530–1534. doi:10.1093/molbev/msaa015
  • Rambaut A, Lam TT, Max Carvalho L, et al. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016 Jan;2(1):vew007.
  • Suchard MA, Lemey P, Baele G, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018 Jan;4(1):vey016.
  • Drummond AJ, Ho SY, Phillips MJ, et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88. doi:10.1371/journal.pbio.0040088
  • Minin VN, Bloomquist EW, Suchard MA. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008;25(7):1459–1471. doi:10.1093/molbev/msn090
  • Rambaut A, Drummond AJ, Xie D, et al. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67(5):901–904. doi:10.1093/sysbio/syy032
  • Yu G, Smith DK, Zhu H, et al. Solutions for loss of information in high-beta-diversity community data. Methods Eco Evol. 2017;8(1):68–74. doi:10.1111/2041-210X.12652
  • Ortiz L, Geiger G, Ferreri L, et al. Blue-Winged teals in Guatemala and their potential role in the ecology of H14 subtype influenza a viruses. Viruses. 2023 Feb 9;15(2):483. doi:10.3390/v15020483
  • Bottcher-Friebertshauser E, Klenk HD, Garten W. The synergies of microorganisms enlightened - convergent approaches to delineating coinfections. Pathog Dis. 2013;69(2):71–71. doi:10.1111/2049-632X.12101
  • Verhagen JH, van Dijk JG, Vuong O, et al. Transfer of maternal antibodies against avian influenza virus in mallards (anas platyrhynchos). PLoS One. 2014;9(11):e112595, doi:10.1371/journal.pone.0112595
  • Ausvet. Avian disease surveillance in the Asia and the Pacific region. 2022 [cited 2023 Sept 30]; Available from: https://rr-asia.woah.org/wp-content/uploads/2023/08/avian_disease_surveillance_asia_pacific_final_clean.pdf.
  • Fries AC, Nolting JM, Danner A, et al. Evidence for the circulation and inter-hemispheric movement of the H14 subtype influenza A virus. PLoS One. 2013;8(3):e59216, doi:10.1371/journal.pone.0059216
  • Hoye BJ, Munster VJ, Nishiura H, et al. Surveillance of wild birds for avian influenza virus. Emerg Infect Dis. 2010;16(12):1827–1834. doi:10.3201/eid1612.100589
  • Wilcox BR, Knutsen GA, Berdeen J, et al. Influenza-A viruses in ducks in northwestern Minnesota: fine scale spatial and temporal variation in prevalence and subtype diversity. PLoS One. 2011;6(9):e24010, doi:10.1371/journal.pone.0024010
  • Curran JM, Ellis TM, Robertson ID. Surveillance of charadriiformes in northern Australia shows species variations in exposure to avian influenza virus and suggests negligible virus prevalence. Avian Dis. 2014;58(2):199–204. doi:10.1637/10634-080913
  • Fereidouni SR, Starick E, Beer M, et al. Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS One. 2009;4(8):e6706, doi:10.1371/journal.pone.0006706
  • Verhagen JH, Eriksson P, Leijten L, et al. Host range of influenza A virus H1 to H16 in eurasian ducks based on tissue and receptor binding studies. J Virol. 2021 Feb 24;95(6):e01873-20. doi:10.1128/JVI.01873-20
  • Ramey AM, Poulson RL, Gonzalez-Reiche AS, et al. Genomic characterization of H14 subtype influenza A viruses in new world waterfowl and experimental infectivity in mallards (Anas platyrhynchos). PLoS One. 2014;9(5):e95620, doi:10.1371/journal.pone.0095620
  • Veits J, Weber S, Stech O, et al. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci U S A. 2012;109(7):2579–2584. doi:10.1073/pnas.1109397109