1,918
Views
0
CrossRef citations to date
0
Altmetric
Emerging and Re-Emerging Coronaviruses

The impact of S2 mutations on Omicron SARS-CoV-2 cell surface expression and fusogenicity

, , , , , , , , , , & show all
Article: 2297553 | Received 06 Jul 2023, Accepted 17 Dec 2023, Published online: 13 Feb 2024

References

  • Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in Southern Africa. Nature. 2022;603(7902):679–686. doi:10.1038/s41586-022-04411-y
  • Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2022;602(7898):671–675. doi:10.1038/s41586-021-04389-z
  • Cele S, Jackson L, Khoury DS, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2022;602(7898):654–656. doi:10.1038/s41586-021-04387-1
  • Syed AM, Ciling A, Taha TY, et al. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. Proc Natl Acad Sci USA. 2022;119(31):e2200592119. doi:10.1073/pnas.2200592119
  • Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell. 2023;186(2):279–286.e8. doi:10.1016/j.cell.2022.12.018
  • Casalino L, Gaieb Z, Goldsmith JA, et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci. 2020;6(10):1722–1734. doi:10.1021/acscentsci.0c01056
  • Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–333. doi:10.1126/science.abb9983
  • Klenk HD, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68(2):426–439. doi:10.1016/0042-6822(75)90284-6
  • Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68(2):440–454. doi:10.1016/0042-6822(75)90285-8
  • Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20. doi:10.1038/s41580-021-00418-x
  • Rajah MM, Bernier A, Buchrieser J, et al. The mechanism and consequences of SARS-CoV-2 spike-mediated fusion and syncytia formation. J Mol Biol. 2022;434(6):167280. doi:10.1016/j.jmb.2021.167280
  • Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):3. doi:10.26508/lsa.202000786
  • Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 Is essential for infection of human lung cells. Mol Cell. 2020;78(4):779–784.e5. doi:10.1016/j.molcel.2020.04.022
  • Johnson BA, Xie X, Kalveram B, et al. Furin cleavage site Is Key to SARS-CoV-2 pathogenesis. bioRxiv. 2020 Aug 26.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271–280.e8. doi:10.1016/j.cell.2020.02.052
  • Zhao MM, Yang WL, Yang FY, et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther. 2021;6(1):134. doi:10.1038/s41392-021-00558-8
  • Buchrieser J, Dufloo J, Hubert M, et al. Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 2020;39(23):e106267. doi:10.15252/embj.2020106267
  • Li X, Yuan H, Li X, et al. Spike protein mediated membrane fusion during SARS-CoV-2 infection. J Med Virol. 2023;95(1):e28212. doi:10.1002/jmv.28212
  • Cattin-Ortolá J, Welch LG, Maslen SL, et al. Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at the cell surface and syncytia formation. Nat Commun. 2021;12(1):5333. doi:10.1038/s41467-021-25589-1
  • Bussani R, Schneider E, Zentilin L, et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020;61:103104. doi:10.1016/j.ebiom.2020.103104
  • Braga L, Ali H, Secco I, et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature. 2021;594(7861):88–93. doi:10.1038/s41586-021-03491-6
  • Escalera A, Gonzalez-Reiche AS, Aslam S, et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe. 2022;30(3):373–387.e7. doi:10.1016/j.chom.2022.01.006
  • Liu Y, Liu J, Plante KS, et al. The N501Y spike substitution enhances SARS-CoV-2 transmission. bioRxiv. 2021 Mar 9.
  • Pondé RAA. Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology. 2022;572:44–54. doi:10.1016/j.virol.2022.05.003
  • Rathnasinghe R, Jangra S, Cupic A, et al. The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. medRxiv. 2021 Jan 20.
  • Motozono C, Toyoda M, Zahradnik J, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29(7):1124–1136.e11. doi:10.1016/j.chom.2021.06.006
  • Zhang Y, Zhang T, Fang Y, et al. SARS-CoV-2 spike L452R mutation increases Omicron variant fusogenicity and infectivity as well as host glycolysis. Signal TransductTarget Ther. 2022;7(1):76. doi:10.1038/s41392-022-00941-z
  • Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022;608(7923):603–608. doi:10.1038/s41586-022-05053-w
  • Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun. 2023;14(1):2800. doi:10.1038/s41467-023-38435-3
  • Peacock TP, Brown JC, Zhou J, et al. The altered entry pathway and antigenic distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein. bioRxiv; 2022:2021.12.31.474653.
  • Miorin L, Mire CE, Ranjbar S, et al. The oral drug nitazoxanide restricts SARS-CoV-2 infection and attenuates disease pathogenesis in Syrian hamsters. bioRxiv; 2022:2022.02.08.479634.
  • Escalera A, García-Sastre A, Aydillo T. Protocol to isolate and assess spike protein cleavage in SARS-CoV-2 variants obtained from clinical COVID-19 samples. STAR Protoc. 2022;3(3):101502. doi:10.1016/j.xpro.2022.101502
  • Quick J, Grubaugh ND, Pullan ST, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017;12(6):1261–1276. doi:10.1038/nprot.2017.066
  • Gonzalez-Reiche AS, Hernandez MM, Sullivan MJ, et al. Introductions and early spread of SARS-CoV-2 in the New York City area. Science. 2020;369(6501):297–301. doi:10.1126/science.abc1917
  • Gonzalez-Reiche AS, Alshammary H, Schaefer S, et al. Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants. Nat Commun. 2023;14(1):3235. doi:10.1038/s41467-023-38867-x
  • Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6(7):899–909. doi:10.1038/s41564-021-00908-w
  • Lubinski B, Tang T, Daniel S, et al. Functional evaluation of proteolytic activation for the SARS-CoV-2 variant B.1.1.7: role of the P681H mutation. bioRxiv. 2021 Apr 8.
  • Peacock TP, Sheppard CM, Brown JC, et al. The SARS-CoV-2 variants associated with infections in India, B.1.617, show enhanced spike cleavage by furin. bioRxiv; 2021:2021.05.28.446163.
  • Liu L, Iketani S, Guo Y, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 2022;602(7898):676–681. doi:10.1038/s41586-021-04388-0
  • Yu J, Collier A-r, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N Engl J Med. 2022;386(16):1579–1580. doi:10.1056/NEJMc2201849
  • Ito J, Suzuki R, Uriu K, et al. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat Commun. 2023;14(1):2671. doi:10.1038/s41467-023-38188-z
  • Li Q, Liu Y, Zhang L. Cytoplasmic tail determines the membrane trafficking and localization of SARS-CoV-2 spike protein. Front Mol Biosci. 2022;9:1004036. doi:10.3389/fmolb.2022.1004036
  • Chen D-Y, Chin CV, Kenney D, et al. Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature. 2023;615(7950):143–150. doi:10.1038/s41586-023-05697-2
  • Taha TY, Chen IP, Hayashi JM, et al. Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6. Nat Commun. 2023;14(1):2308. doi:10.1038/s41467-023-37787-0
  • Bills C, Xie X, Shi PY. The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2. Antiviral Res. 2023;213:105590. doi:10.1016/j.antiviral.2023.105590
  • Tsujino S, Deguchi S, Nomai T, et al. Virological characteristics of the SARS-CoV-2 Omicron EG.5.1 variant. bioRxiv; 2023:2023.10.19.563209.
  • Meng B, Abdullahi A, Ferreira IATM, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706–714. doi:10.1038/s41586-022-04474-x
  • Zeng C, Evans JP, Qu P, et al. Neutralization and stability of SARS-CoV-2 omicron variant. bioRxiv. 2021. 2021:2021.12.16.472934.
  • Zhang J, Cai Y, Lavine CL, et al. Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Rep. 2022;39(4):110729. doi:10.1016/j.celrep.2022.110729
  • Tamura T, Yamasoba D, Oda Y, et al. Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5. bioRxiv. 2022: 2022.08.05.502758.
  • Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell. 2022;185(21):3992–4007.e16. doi:10.1016/j.cell.2022.09.018
  • Uraki R, Halfmann PJ, Iida S, et al. Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents. Nature. 2022;612(7940):540–545. doi:10.1038/s41586-022-05482-7
  • Ghosh S, Dellibovi-Ragheb TA, Kerviel A, et al. β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell. 2020;183(6):1520–1535.e14. doi:10.1016/j.cell.2020.10.039
  • Zeng C, Evans JP, Faraone JN, et al. Neutralization of SARS-CoV-2 variants of concern harboring Q677H. mBio. 2021;12(5):e02510–21. doi:10.1128/mBio.02510-21
  • Bertelli A, D’Ursi P, Campisi G, et al. Role of Q675H mutation in improving SARS-CoV-2 spike interaction with the furin binding pocket. Viruses. 2021;13(12):2511. doi:10.3390/v13122511
  • Mohammad A, Abubaker J, Al-Mulla F. Structural modelling of SARS-CoV-2 alpha variant (B.1.1.7) suggests enhanced furin binding and infectivity. Virus Res. 2021;303:198522. doi:10.1016/j.virusres.2021.198522
  • Liu Y, Liu J, Johnson BA, et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 2022;39(7):110829. doi:10.1016/j.celrep.2022.110829
  • Lubinski B, Jaimes JA, Whittaker GR. Intrinsic furin-mediated cleavability of the spike S1/S2 site from SARS-CoV-2 variant B.1.1.529 (Omicron). bioRxiv. 2022:2022.04.20.488969.
  • Fibke CD, Joffres Y, Tyson JR, et al. Spike mutation profiles associated With SARS-CoV-2 breakthrough infections in delta emerging and predominant time periods in British Columbia, Canada. Front Public Health. 2022;10:915363. doi:10.3389/fpubh.2022.915363
  • Wang Q, Ye S-B, Zhou Z-J, et al. Key mutations in the spike protein of SARS-CoV-2 affecting neutralization resistance and viral internalization. J Med Virol. 2023;95(1):e28407.doi:10.1002/jmv.28407