1,387
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Detection of anti-premembrane antibody as a specific marker of four flavivirus serocomplexes and its application to serosurveillance in endemic regions

, , , , , , , , , , , , , & ORCID Icon show all
Article: 2301666 | Received 22 Sep 2023, Accepted 30 Dec 2023, Published online: 22 Jan 2024

References

  • Pierson TC, Diamond MS. Flaviviruses. In: Knipe DM, Howley PM, editor. Fields virology. 6th ed. Philadelphia: Lippincott William & Wilkins; 2013. p. 747–794.
  • Guzman MG, Harris E. Dengue. Lancet. 2015;385:453–465. doi:10.1016/S0140-6736(14)60572-9
  • Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496:504–507. doi:10.1038/nature12060
  • World Health Organization. Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
  • Halstead SB, Dans LF. Dengue infection and advances in dengue vaccines for children. Lancet Child Adolesc Health. 2019;3:734–741. doi:10.1016/S2352-4642(19)30205-6
  • WHO. Dengue vaccine: WHO position paper - September 2018. Wkly Epidemiol Rec. 2018;93:457–476.
  • Sridhar S, Luedtke A, Langevin E, et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018;379:327–340. doi:10.1056/NEJMoa1800820
  • Wilder-Smith A, Smith PG, Luo R, et al. Pre-vaccination screening strategies for the use of the CYD-TDV dengue vaccine: a meeting report. Vaccine. 2019;37:5137–5146. doi:10.1016/j.vaccine.2019.07.016
  • Chen LH, Wilson ME. Yellow fever control: current epidemiology and vaccination strategies. Trop Dis Travel Med Vaccines. 2020;6:1. doi:10.1186/s40794-020-0101-0
  • de Oliveira Figueiredo P, Stoffella-Dutra AG, Barbosa Costa G, et al. Re-emergence of yellow fever in Brazil during 2016–2019: challenges, lessons learned, and perspectives. Viruses. 2020;12:1233. doi:10.3390/v12111233
  • Girard M, Nelson CB, Picot V, et al. Arboviruses: a global public health threat. Vaccine. 2020;38:3989–3994. doi:10.1016/j.vaccine.2020.04.011
  • Jani C, Kakoullis L, Abdallah N, et al. West Nile virus: another emerging arboviral risk for travelers? Curr Infect Dis Rep. 2022;24:117–128. doi:10.1007/s11908-022-00783-4
  • Lessler J, Chaisson LH, Kucirka LM, et al. Assessing the global threat from Zika virus. Science. 2016;353:aaf8160. doi:10.1126/science.aaf8160
  • PAHO. Regional Zika epidemiological update (Americas) - 25 August 2017 [accessed 2020 Dec. 1]. Available from: http://www.paho.org/hq/index.php?option=com_content&view=article&id=11599&Itemid=41691&lang=en.
  • Musso D, Ko AI, Baud D. Zika virus infection — after the pandemic. N Engl J Med. 2019;381:1444–1457. doi:10.1056/NEJMra1808246
  • Anderson KB, Gibbons RV, Thomas SJ, et al. Preexisting Japanese encephalitis virus neutralizing antibodies and increased symptomatic dengue illness in a school-based cohort in Thailand. PLoS Negl Trop Dis. 2011;5:e1311. doi:10.1371/journal.pntd.0001311
  • Rodriguez-Barraquer I, Costa F, Nascimento EJM, et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science. 2019;363:607–610. doi:10.1126/science.aav6618
  • Gordon A, Gresh L, Ojeda S, et al. Prior dengue virus infection and risk of Zika: a pediatric cohort in Nicaragua. PLoS Med. 2019;16:e1002726. doi:10.1371/journal.pmed.1002726
  • Katzelnick LC, Narvaez C, Arguello S, et al. Zika virus infection enhances future risk of severe dengue disease. Science. 2020;369:1123–1128. doi:10.1126/science.abb6143
  • Tsai WY, Lin HE, Wang WK. Complexity of human antibody response to dengue virus: implication for vaccine development. Front Microbiol. 2017;8:1372. doi:10.3389/fmicb.2017.01372
  • Martin DA, Muth DA, Brown T, et al. Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections. J Clin Microbiol. 2000;38:1823–1826. doi:10.1128/JCM.38.5.1823-1826.2000
  • Johnson AJ, Martin DA, Karabatsos N, et al. Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J Clin Microbiol. 2000;38:1827–1831. doi:10.1128/JCM.38.5.1827-1831.2000
  • Guidance for U.S. Laboratories testing for Zika virus infection. From CDC’s website: http://www.cdc.gov/zika/laboratories/lab-guidance.html
  • Lai CY, Tsai WY, Lin SR, et al. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol. 2008;82:6631–6643. doi:10.1128/JVI.00316-08
  • Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg infect Dis. 2008;14:1232–1239. doi:10.3201/eid1408.080287
  • Johnson BW, Kosoy O, Martin DA, et al. West Nile virus infection and serologic response among persons previously vaccinated against yellow fever and Japanese encephalitis viruses. Vector Borne Zoonotic Dis. 2005;5:137–145. doi:10.1089/vbz.2005.5.137
  • Felix AC, Souza NCS, Figueiredo WM, et al. Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection. J Med Virol. 2017;89:1477–1479. doi:10.1002/jmv.24789
  • Steinhagen K, Probst C, Radzimski C, et al. Serodiagnosis of Zika virus (ZIKV) infections by a novel NS1-based ELISA devoid of cross-reactivity with dengue virus antibodies: a multicohort study of assay performance, 2015 to 2016. Euro Surveill. 2016;21:30426. doi:10.2807/1560-7917.ES.2016.21.50.30426
  • Safronetz D, Sloan A, Stein DR, et al. Evaluation of 5 commercially available Zika virus immunoassays. Emerg Infect Dis. 2017;23:1577–1580. doi:10.3201/eid2309.162043
  • Balmaseda A, Zambrana JV, Collado D, et al. Comparison of four serological methods and two reverse transcription-PCR assays for diagnosis and surveillance of Zika virus infection. J Clin Microbiol. 2018;56::e01785-17. doi:10.1128/JCM.01785-17
  • Tsai WY, Youn HH, Brites C, et al. Distinguishing secondary dengue virus infection from Zika virus infection With previous dengue by a combination of 3 simple serological tests. Clin Infect Dis. 2017;65:1829–1836. doi:10.1093/cid/cix672
  • Tyson J, Tsai WY, Tsai JJ, et al. A high-throughput and multiplex microsphere immunoassay based on non-structural protein 1 can discriminate three flavivirus infections. PLoS Negl Trop Dis. 2019;13:e0007649. doi:10.1371/journal.pntd.0007649
  • Premkumar L, Collins M, Graham S, et al. Development of envelope protein antigens to serologically differentiate Zika virus infection from dengue virus infection. J Clin Microbiol. 2018;56:e01504-17. doi:10.1128/JCM.01504-17
  • Chao DY, Whitney MT, Davis BS, et al. Comprehensive evaluation of differential serodiagnosis between Zika and dengue viral infections. J Clin Microbiol. 2019;57:e01506-18.
  • Rockstroh A, Moges B, Barzon L, et al. Specific detection of dengue and Zika virus antibodies using envelope proteins with mutations in the conserved fusion loop. Emerg Microbes Infect. 2017;6:e99. doi:10.1038/emi.2017.87
  • Tsai WY, Driesse K, Tsai JJ, et al. Enzyme-linked immunosorbent assays using virus-like particles containing mutations of conserved residues on envelope protein can distinguish three flavivirus infections. Emerg Microbe Infect. 2020;9:1722–1732. doi:10.1080/22221751.2020.1797540
  • Innis BL. Antibody responses to dengue virus infection. In: Gubler DJ, Kuno G, editor. Dengue and dengue hemorrhagic fever. Cambridge, MA: CAB International; 1997. p. 221–244.
  • Halstead SB. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 2003;60:421–467. doi:10.1016/S0065-3527(03)60011-4
  • Alvarez M, Rodriguez-Roche R, Bernardo L, et al. Dengue hemorrhagic fever caused by sequential dengue 1-3 virus infections over a long time interval: Havana epidemic, 2001-2002. Am J Trop Med Hyg. 2006;75:1113–1117. doi:10.4269/ajtmh.2006.75.1113
  • Hsieh SC, Tsai WY, Tsai JJ, et al. Identification of anti-premembrane antibody as a serocomplex-specific marker to discriminate Zika, dengue, and West Nile virus infections. J Virol. 2021;95:e0061921. doi:10.1128/JVI.00619-21
  • Kuan G, Gordon A, Avilés W, et al. The Nicaraguan pediatric dengue cohort study: study design, methods, use of information technology, and extension to other infectious diseases. Am J Epidemiol. 2009;170:120–129. doi:10.1093/aje/kwp092
  • Narvaez F, Gutierrez G, Perez MA, et al. Evaluation of the traditional and revised WHO classifications of dengue disease severity. PLoS Negl Trop Dis. 2011;5:e1397. doi:10.1371/journal.pntd.0001397
  • Herrera BB, Tsai WY, Brites C, et al. T cell responses to nonstructural protein 3 distinguish infections by dengue and Zika viruses. mBio. 2018;9:e00755-18.
  • Tyson J, Tsai WY, Tsai JJ, et al. Combination of non-structural protein 1-based enzyme-linked immunosorbent assays can detect and distinguish various dengue virus and Zika virus infections. J Clin Microbiol. 2019;57:e01464-18. doi:10.1128/JCM.01464-18
  • Tsai JJ, Liu CK, Tsai WY, et al. Seroprevalence of dengue in two districts of Kaohsiung city after the largest dengue outbreak in Taiwan since world war II. PLoS Negl Trop Dis. 2018;12:e0006879.
  • Tsai WY, Chen HL, Tsai JJ, et al. Potent neutralizing human monoclonal antibodies preferentially target mature dengue virus particles: implication for novel strategy of dengue vaccine. J Virol. 2018;92:e00556-18.
  • Dai YC, Sy AK, Jiz M, et al. Identification of prior dengue-naïve Dengvaxia recipients with an increased risk for symptomatic dengue during fever surveillance in the Philippines. Front Immunol. 2023;14:1202055. doi:10.3389/fimmu.2023.1202055
  • Frey A, Di Canzio J, Zurakowski D. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods. 1998;221:35–41. doi:10.1016/S0022-1759(98)00170-7
  • Duong V, Dussart P, Buchy P. Zika virus in Asia. Int J Infect Dis. 2017;54:121–128. doi:10.1016/j.ijid.2016.11.420
  • Sasmono RT, Dhenni R, Yohan B, et al. Zika virus seropositivity in 1-4-year-old children, Indonesia, 2014. Emerg Infect Dis. 2018;24:1740–1743. doi:10.3201/eid2409.180582
  • Sasmono RT, Johar E, Yohan B, et al. Spatiotemporal heterogeneity of Zika virus transmission in Indonesia: serosurveillance data from a pediatric population. Am J Trop Med Hyg. 2021;104:2220–2223. doi:10.4269/ajtmh.21-0010
  • Pastorino B, Sengvilaipaseuth O, Chanthongthip A, et al. Low Zika virus seroprevalence in Vientiane, Laos, 2003-2015. Am J Trop Med Hyg. 2019;100:639–642. doi:10.4269/ajtmh.18-0439
  • Ruchusatsawat K, Wongjaroen P, Posanacharoen A, et al. Long-term circulation of Zika virus in Thailand: an observational study. Lancet Infect Dis. 2019;19:439–446. doi:10.1016/S1473-3099(18)30718-7
  • Biggs JR, Sy AK, Brady OJ, et al. Serological evidence of widespread Zika transmission across the Philippines. Viruses. 2021;13:1441. doi:10.3390/v13081441
  • Lonogan K, de Guzman A, Delos Reyes VC, et al. The enhanced Zika surveillance in the Philippines, November 14, 2016–February 28, 2017. Int J Infect Dis. 2020;101:232–233. doi:10.1016/j.ijid.2020.11.042
  • L'Azou M, Moureau A, Sarti E, et al. Symptomatic dengue in children in 10 Asian and Latin American countries. N Engl J Med. 2016;374:1155–1166. doi:10.1056/NEJMoa1503877
  • Netto EM, Moreira-Soto A, Pedroso C, et al. High Zika virus seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks. MBio. 2017;8:e01390-17. doi:10.1128/mBio.01390-17
  • Alves LV, Leal CA, Alves JGB. Zika virus seroprevalence in women who gave birth during Zika virus outbreak in Brazil - a prospective observational study. Heliyon. 2020;6:e04817.
  • Rezende IM, Sacchetto L, Munhoz de Mello É, et al. Persistence of yellow fever virus outside the Amazon Basin, causing epidemics in Southeast Brazil, from 2016 to 2018. PLoS Negl Trop Dis. 2018;12:e0006538. doi:10.1371/journal.pntd.0006538
  • Dexheimer Paploski IA, Souza RL, Tauro LB, et al. Epizootic outbreak of yellow fever virus and risk for human disease in Salvador, Brazil. Ann Intern Med. 2018;168:301–302. doi:10.7326/M17-1949
  • Shearer FM, Moyes CL, Pigott DM, et al. Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis. Lancet Infect Dis. 2017;17:1209–1217. doi:10.1016/S1473-3099(17)30419-X
  • Montoya M, Collins M, Dejnirattisai W, et al. Longitudinal analysis of antibody cross-neutralization following Zika virus and dengue virus infection in Asia and the Americas. J Infect Dis. 2018;218:536–545. doi:10.1093/infdis/jiy164
  • Harapan H, Panta K, Michie A, et al. Hyperendemic dengue and possible Zika circulation in the westernmost region of the Indonesian Archipelago. Viruses. 2022;14:219. doi:10.3390/v14020219
  • Nurtop E, Villarroel PMS, Pastorino B, et al. Combination of ELISA screening and seroneutralisation tests to expedite Zika virus seroprevalence studies. Virol J. 2018;15:192. doi:10.1186/s12985-018-1105-5
  • Saba Villarroel PM, Nurtop E, Pastorino B, et al. Zika virus epidemiology in Bolivia: a seroprevalence study in volunteer blood donors. PLoS Negl Trop Dis. 2018;12:e0006239. doi:10.1371/journal.pntd.0006239
  • Lopez AL, Adams C, Ylade M, et al. Determining dengue virus serostatus by indirect IgG ELISA compared with focus reduction neutralisation test in children in Cebu, Philippines: a prospective population-based study. Lancet Glob Health. 2021;9:e44–e51. doi:10.1016/S2214-109X(20)30392-2
  • Simmons G, Stone M, Busch MP. Arbovirus diagnostics: from bad to worse due to expanding dengue virus vaccination and Zika virus epidemics. Clin Infect Dis. 2018;66:1181–1113. doi:10.1093/cid/cix972
  • Munoz-Jordan JL. Diagnosis of Zika virus infections: challenges and opportunities. J Infect Dis. 2017;216:S951–S956. doi:10.1093/infdis/jix502