1,223
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Balancing functions of regulatory T cells in mosquito-borne viral infections

, & ORCID Icon
Article: 2304061 | Received 05 Sep 2023, Accepted 07 Jan 2024, Published online: 25 Jan 2024

References

  • Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5(6):796–812. doi:10.1038/s41564-020-0714-0. Epub 2020/05/06. PubMed PMID: 32367055; PubMed Central PMCID: PMCPMC7696730.
  • Lim EXY, Lee WS, Madzokere ET, et al. Mosquitoes as suitable vectors for alphaviruses. Viruses. 2018;10(2). doi:10.3390/v10020084. Epub 2018/02/15. PubMed PMID: 29443908; PubMed Central PMCID: PMCPMC5850391.
  • Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun. 2020;11(1):2130. doi:10.1038/s41467-020-16010-4. Epub 2020/05/03. PubMed PMID: 32358588; PubMed Central PMCID: PMCPMC7195482.
  • Wilder-Smith A, Ooi EE, Horstick O, et al. Dengue. Lancet. 2019;393(10169):350–363. doi:10.1016/S0140-6736(18)32560-1. Epub 2019/01/31. PubMed PMID: 30696575.
  • Ho YL, Joelsons D, Leite GFC, et al. Severe yellow fever in Brazil: clinical characteristics and management. J Travel Med. 2019;26(5). doi:10.1093/jtm/taz040. Epub 2019/06/01. PubMed PMID: 31150098.
  • Calvet G, Aguiar RS, Melo ASO, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016;16(6):653–660. doi:10.1016/S1473-3099(16)00095-5
  • Fox JM, Diamond MS. Immune-mediated protection and pathogenesis of chikungunya virus. J Immunol. 2016;197(11):4210–4218. doi:10.4049/jimmunol.1601426. Epub 2016/11/20. PubMed PMID: 27864552; PubMed Central PMCID: PMCPMC5120763.
  • Moore SM. The current burden of Japanese encephalitis and the estimated impacts of vaccination: combining estimates of the spatial distribution and transmission intensity of a zoonotic pathogen. PLoS Negl Trop Dis. 2021;15(10):e0009385. doi:10.1371/journal.pntd.0009385. Epub 2021/10/14. PubMed PMID: 34644296; PubMed Central PMCID: PMCPMC8544850.
  • Gould LH, Fikrig E. West Nile virus: a growing concern? J Clin Invest. 2004;113(8):1102–1107. doi:10.1172/JCI21623. Epub 2004/04/16. PubMed PMID: 15085186; PubMed Central PMCID: PMCPMC385414.
  • Culshaw A, Mongkolsapaya J, Screaton GR. The immunopathology of dengue and Zika virus infections. Curr Opin Immunol. 2017;48:1–6. doi:10.1016/j.coi.2017.07.001. Epub 2017/07/25. PubMed PMID: 28738211.
  • Belkaid Y, Tarbell K. Regulatory T cells in the control of host-microorganism interactions. Annu Rev Immunol. 2009;27:551–589. doi:10.1146/annurev.immunol.021908.132723. Epub 2009/03/24. PubMed PMID: 19302048.
  • Kleinewietfeld M, Hafler DA. Regulatory T cells in autoimmune neuroinflammation. Immunol Rev. 2014;259(1):231–244. doi:10.1111/imr.12169. Epub 2014/04/10. PubMed PMID: 24712469; PubMed Central PMCID: PMCPMC3990868.
  • Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500. doi:10.1038/nri2785. Epub 2010/06/19. Epub 2010/06/19. PubMed PMID: 20559327.
  • Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. 2013;25(4):305–312. doi:10.1016/j.smim.2013.10.009. Epub 2013/11/12. PubMed PMID: 24211039; PubMed Central PMCID: PMCPMC3905679.
  • Borsellino G, Kleinewietfeld M, Di Mitri D, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110(4):1225–1232. doi:10.1182/blood-2006-12-064527. Epub 2007/04/24. PubMed PMID: 17449799.
  • Arroyo Hornero R, Hamad I, Côrte-Real B, et al. The impact of dietary components on regulatory T cells and disease. Front Immunol. 2020;11:253. doi:10.3389/fimmu.2020.00253. Epub 2020/03/11. PubMed PMID: 32153577; PubMed Central PMCID: PMCPMC7047770.
  • Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7(11):875–888. doi:10.1038/nri2189
  • Mongkolsapaya J, Dejnirattisai W, Xu XN, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med. 2003;9(7):921–927. doi:10.1038/nm887. Epub 2003/06/17. PubMed PMID: 12808447.
  • Tian Y, Grifoni A, Sette A, et al. Characterization of magnitude and antigen specificity of HLA-DP, DQ, and DRB3/4/5 restricted DENV-specific CD4+ T cell responses. Front Immunol. 2019;10:2125. doi:10.3389/fimmu.2019.01568. Epub 2019/09/26. PubMed PMID: 31552052; PubMed Central PMCID: PMCPMC6737489.
  • Weiskopf D, Angelo MA, de Azeredo EL, et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc Natl Acad Sci U S A. 2013;110(22):E2046–E2053. doi:10.1073/pnas.1305227110. Epub 2013/04/13. PubMed PMID: 23580623; PubMed Central PMCID: PMCPMC3670335.
  • Simon-Lorière E, Duong V, Tawfik A, et al. Increased adaptive immune responses and proper feedback regulation protect against clinical dengue. Sci Transl Med. 2017;9(405). doi:10.1126/scitranslmed.aal5088. Epub 2017/09/01. PubMed PMID: 28855396.
  • Jayaratne HE, Wijeratne D, Fernando S, et al. Regulatory T-cells in acute dengue viral infection. Immunology. 2018;154(1):89–97. doi:10.1111/imm.12863. Epub 2017/11/16. PubMed PMID: 29140541; PubMed Central PMCID: PMCPMC5904698.
  • Luhn K, Simmons CP, Moran E, et al. Increased frequencies of CD4+CD25high regulatory T cells in acute dengue infection. J Exp Med. 2007;204(5):979–985. doi:10.1084/jem.20061381. Epub 2007/04/25. PubMed PMID: 17452519; PubMed Central PMCID: PMCPMC2118571.
  • Tillu H, Tripathy AS, Reshmi PV, et al. Altered profile of regulatory T cells and associated cytokines in mild and moderate dengue. Eur J Clin Microbiol Infect Dis. 2016;35(3):453–461. doi:10.1007/s10096-015-2561-0. Epub 2016/02/11. PubMed PMID: 26861813.
  • Estrada-Jimenez T, Flores-Mendoza L, Avila-Jimenez L, et al. Low activation of CD8+ T cells in response to viral peptides in Mexican patients with severe dengue. J Immunol Res. 2022;2022:9967594. doi:10.1155/2022/9967594. Epub 2022/04/05. PubMed PMID: 35372587; PubMed Central PMCID: PMCPMC8975689 publication of this paper.
  • Hanley JP, Tu HA, Dragon JA, et al. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun. 2021;12(1):3054. doi:10.1038/s41467-021-22930-6. Epub 2021/05/26. PubMed PMID: 34031380; PubMed Central PMCID: PMCPMC8144425.
  • Rouers A, Chng MHY, Lee B, et al. Immune cell phenotypes associated with disease severity and long-term neutralizing antibody titers after natural dengue virus infection. Cell Rep Med. 2021;2(5):100278. doi:10.1016/j.xcrm.2021.100278. Epub 2021/06/08. PubMed PMID: 34095880; PubMed Central PMCID: PMCPMC8149372.
  • Robinson ML, Glass DR, Duran V, et al. Magnitude and kinetics of the human immune cell response associated with severe dengue progression by single-cell proteomics. Sci Adv. 2023;9(12):eade7702. doi:10.1126/sciadv.ade7702. Epub 2023/03/25. PubMed PMID: 36961888; PubMed Central PMCID: PMCPMC10038348.
  • Leowattana W, Leowattana T. Dengue hemorrhagic fever and the liver. World J Hepatol. 2021;13(12):1968–1976. doi:10.4254/wjh.v13.i12.1968. Epub 2022/01/25. PubMed PMID: 35070001; PubMed Central PMCID: PMCPMC8727196.
  • Pagliari C, Quaresma JA, Fernandes ER, et al. Immunopathogenesis of dengue hemorrhagic fever: contribution to the study of human liver lesions. J Med Virol. 2014;86(7):1193–1197. doi:10.1002/jmv.23758. Epub 2013/10/12. PubMed PMID: 24114877.
  • Prestwood TR, Morar MM, Zellweger RM, et al. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice. J Virol. 2012;86(23):12561–12570. doi:10.1128/JVI.06743-11. Epub 2012/09/14. PubMed PMID: 22973027; PubMed Central PMCID: PMCPMC3497655.
  • Yauch LE, Prestwood TR, May MM, et al. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J Immunol. 2010;185(9):5405–5416. doi:10.4049/jimmunol.1001709. Epub 2010/09/28. PubMed PMID: 20870934; PubMed Central PMCID: PMCPMC2962919.
  • Lee SE, Li X, Kim JC, et al. Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology. 2012;143(1):145–154. doi:10.1053/j.gastro.2012.03.042. Epub 2012/04/06. PubMed PMID: 22475534; PubMed Central PMCID: PMCPMC3729390.
  • George JA, Park SO, Choi JY, et al. Double-faced implication of CD4(+) Foxp3(+) regulatory T cells expanded by acute dengue infection via TLR2/MyD88 pathway. Eur J Immunol. 2020;50(7):1000–1018. doi:10.1002/eji.201948420. Epub 2020/03/04. PubMed PMID: 32125695.
  • Mapalagamage M, Weiskopf D, Sette A, et al. Current understanding of the role of T cells in chikungunya, dengue and Zika infections. Viruses. 2022;14(2). doi:10.3390/v14020242. Epub 2022/02/27. PubMed PMID: 35215836; PubMed Central PMCID: PMCPMC8878350.
  • Wauquier N, Becquart P, Nkoghe D, et al. The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis. 2011;204(1):115–123. doi:10.1093/infdis/jiq006
  • Teo TH, Lum FM, Claser C, et al. A pathogenic role for CD4+ T cells during Chikungunya virus infection in mice. J Immunol. 2013;190(1):259–269. doi:10.4049/jimmunol.1202177. Epub 2012/12/05. PubMed PMID: 23209328.
  • Kulkarni SP, Ganu M, Jayawant P, et al. Regulatory T cells and IL-10 as modulators of chikungunya disease outcome: a preliminary study. Eur J Clin Microbiol Infect Dis. 2017;36(12):2475–2481. doi:10.1007/s10096-017-3087-4. Epub 2017/08/26. PubMed PMID: 28840350.
  • Gois BM, Peixoto RF, Guerra-Gomes IC, et al. Regulatory T cells in acute and chronic human Chikungunya infection. Microbes Infect. 2022;24(3):104927. doi:10.1016/j.micinf.2021.104927. Epub 2021/12/20. PubMed PMID: 34923142.
  • Lee WW, Teo TH, Her Z, et al. Expanding regulatory T cells alleviates chikungunya virus-induced pathology in mice. J Virol. 2015;89(15):7893–7904. doi:10.1128/JVI.00998-15. Epub 2015/05/23. PubMed PMID: 25995249; PubMed Central PMCID: PMCPMC4505607.
  • Miner JJ, Cook LE, Hong JP, et al. Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Sci Transl Med. 2017;9(375). doi:10.1126/scitranslmed.aah3438. Epub 2017/02/06. PubMed PMID: 28148840; PubMed Central PMCID: PMCPMC5448557.
  • Petersen LR, Jamieson DJ, Powers AM, et al. Zika virus. N Engl J Med. 2016;374(16):1552–1563. doi:10.1056/NEJMra1602113. Epub 2016/03/31. PubMed PMID: 27028561.
  • Baud D, Gubler DJ, Schaub B, et al. An update on Zika virus infection. Lancet. 2017;390(10107):2099–2109. doi:10.1016/S0140-6736(17)31450-2. Epub 2017/06/26. PubMed PMID: 28647173.
  • Grifoni A, Costa-Ramos P, Pham J, et al. Cutting edge: transcriptional profiling reveals multifunctional and cytotoxic antiviral responses of Zika virus–specific CD8+ T cells. J Immunol. 2018;201(12):3487–3491. doi:10.4049/jimmunol.1801090. Epub 2018/11/11. PubMed PMID: 30413672; PubMed Central PMCID: PMCPMC6287102.
  • Cimini E, Castilletti C, Sacchi A, et al. Human Zika infection induces a reduction of IFN-γ producing CD4 T-cells and a parallel expansion of effector Vδ2 T-cells. Sci Rep. 2017;7(1):6313. doi:10.1038/s41598-017-06536-x. Epub 2017/07/26. PubMed PMID: 28740159; PubMed Central PMCID: PMCPMC5524759.
  • Guerra-Gomes IC, Gois BM, Peixoto RF, et al. Phenotypical characterization of regulatory T cells in acute Zika infection. Cytokine. 2021;146:155651. doi:10.1016/j.cyto.2021.155651. Epub 2021/07/30. PubMed PMID: 34325119; PubMed Central PMCID: PMCPMC8405058.
  • Ander S, Diamond M, Coyne C. Immune responses at the maternal-fetal interface. Sci Immunol. 2019;4:eaat6114. doi:10.1126/sciimmunol.aat6114
  • Mostrom MJ, Scheef EA, Sprehe LM, et al. Immune profile of the normal maternal-fetal interface in rhesus macaques and its alteration following Zika virus infection. Front Immunol. 2021;12:719810. doi:10.3389/fimmu.2021.719810. Epub 2021/08/17. PubMed PMID: 34394129; PubMed Central PMCID: PMCPMC8358803.
  • Azevedo RSS, de Sousa JR, Araujo MTF, et al. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci Rep. 2018;8(1):1. doi:10.1038/s41598-017-17765-5. Epub 2018/01/10. PubMed PMID: 29311619; PubMed Central PMCID: PMCPMC5758755.
  • Gotuzzo E, Yactayo S, Córdova E. Efficacy and duration of immunity after yellow fever vaccination: systematic review on the need for a booster every 10 years. Am J Trop Med Hyg. 2013;89(3):434–444. doi:10.4269/ajtmh.13-0264. Epub 2013/09/06. PubMed PMID: 24006295; PubMed Central PMCID: PMCPMC3771278 and will participate in a study conducted by Sanofi Pasteur on the epidemiology of meningococcal infections.
  • Watson AM, Lam LK, Klimstra WB, et al. The 17D-204 vaccine strain-induced protection against virulent yellow fever virus is mediated by humoral immunity and CD4+ but not CD8+ T cells. PLoS Pathog. 2016;12(7):e1005786. doi:10.1371/journal.ppat.1005786. Epub 2016/07/28. PubMed PMID: 27463517; PubMed Central PMCID: PMCPMC4962991.
  • Kohler S, Bethke N, Böthe M, et al. The early cellular signatures of protective immunity induced by live viral vaccination. Eur J Immunol. 2012;42(9):2363–2373. doi:10.1002/eji.201142306. Epub 2012/06/27. PubMed PMID: 22733156.
  • Bassi MR, Kongsgaard M, Steffensen MA, et al. CD8+ T cells complement antibodies in protecting against yellow fever virus. J Immunol. 2015;194(3):1141–1153. doi:10.4049/jimmunol.1402605. Epub 2014/12/30. PubMed PMID: 25539816; PubMed Central PMCID: PMCPMC4297749.
  • Blom K, Braun M, Ivarsson MA, et al. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J Immunol. 2013;190(5):2150–2158. doi:10.4049/jimmunol.1202234. Epub 2013/01/23. PubMed PMID: 23338234.
  • de Wolf A, van Aalst S, Ludwig IS, et al. Regulatory T cell frequencies and phenotypes following anti-viral vaccination. PLoS One. 2017;12(6):e0179942. doi:10.1371/journal.pone.0179942. Epub 2017/06/29. PubMed PMID: 28658271; PubMed Central PMCID: PMCPMC5489208.
  • Huber JE, Ahlfeld J, Scheck MK, et al. Dynamic changes in circulating T follicular helper cell composition predict neutralising antibody responses after yellow fever vaccination. Clin Transl Immunology. 2020;9(5):e1129. doi:10.1002/cti2.1129. Epub 2020/05/19. PubMed PMID: 32419947; PubMed Central PMCID: PMCPMC7221214.
  • Linterman MA, Pierson W, Lee SK, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med. 2011;17(8):975–982. doi:10.1038/nm.2425. Epub 2011/07/26. PubMed PMID: 21785433; PubMed Central PMCID: PMCPMC3182542.
  • Huang Y, Chen Z, Wang H, et al. Follicular regulatory T cells: a novel target for immunotherapy? Clin Transl Immunology. 2020;9(2):e1106. doi:10.1002/cti2.1106. Epub 2020/02/23. PubMed PMID: 32082569; PubMed Central PMCID: PMCPMC7019198.
  • Mehlhop E, Diamond MS. The molecular basis of antibody protection against West Nile virus. Curr Top Microbiol Immunol. 2008;317:125–153. doi:10.1007/978-3-540-72146-8_5. Epub 2007/11/10. PubMed PMID: 17990792.
  • Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J Immunol. 2008;181(12):8568–8575. doi:10.4049/jimmunol.181.12.8568. Epub 2008/12/04. PubMed PMID: 19050276; PubMed Central PMCID: PMCPMC3504655.
  • Netland J, Bevan MJ. CD8 and CD4 T cells in west nile virus immunity and pathogenesis. Viruses. 2013;5(10):2573–2584. doi:10.3390/v5102573. Epub 2013/10/25. PubMed PMID: 24153060; PubMed Central PMCID: PMCPMC3814605.
  • Ciurkiewicz M, Herder V, Beineke A. Beneficial and detrimental effects of regulatory T cells in neurotropic virus infections. Int J Mol Sci. 2020;21(5). doi:10.3390/ijms21051705. Epub 2020/03/07. PubMed PMID: 32131483; PubMed Central PMCID: PMCPMC7084400.
  • Klein RS, Hunter CA. Protective and pathological immunity during central nervous system infections. Immunity. 2017;46(6):891–909. doi:10.1016/j.immuni.2017.06.012. Epub 2017/06/22. PubMed PMID: 28636958; PubMed Central PMCID: PMCPMC5662000.
  • Lanteri MC, O'Brien KM, Purtha WE, et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest. 2009;119(11):3266–3277. doi:10.1172/JCI39387. Epub 2009/10/27. PubMed PMID: 19855131; PubMed Central PMCID: PMCPMC2769173.
  • James EA, Gates TJ, LaFond RE, et al. Neuroinvasive west Nile infection elicits elevated and atypically polarized T cell responses that promote a pathogenic outcome. PLoS Pathog. 2016;12(1):e1005375. doi:10.1371/journal.ppat.1005375. Epub 2016/01/23. PubMed PMID: 26795118; PubMed Central PMCID: PMCPMC4721872.
  • Graham JB, Swarts JL, Thomas S, et al. Immune correlates of protection from west Nile virus neuroinvasion and disease. J Infect Dis. 2019;219(7):1162–1171. doi:10.1093/infdis/jiy623. Epub 2018/10/30. PubMed PMID: 30371803; PubMed Central PMCID: PMCPMC6420170.
  • Zhang B, Chan YK, Lu B, et al. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J Immunol. 2008;180(4):2641–2649. doi:10.4049/jimmunol.180.4.2641. Epub 2008/02/06. PubMed PMID: 18250476.
  • Romio M, Reinbeck B, Bongardt S, et al. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol. 2011;301(2):C530–C539. doi:10.1152/ajpcell.00385.2010. Epub 2011/05/20. PubMed PMID: 21593451.
  • Larena M, Regner M, Lee E, et al. Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. J Virol. 2011;85(11):5446–5455. doi:10.1128/JVI.02611-10. Epub 2011/04/01. PubMed PMID: 21450826; PubMed Central PMCID: PMCPMC3094953.
  • Murali-Krishna K, Ravi V, Manjunath R. Protection of adult but not newborn mice against lethal intracerebral challenge with Japanese encephalitis virus by adoptively transferred virus-specific cytotoxic T lymphocytes: requirement for L3T4+ T cells. J Gen Virol. 1996;77(Pt 4):705–714. doi:10.1099/0022-1317-77-4-705. Epub 1996/04/01. PubMed PMID: 8627259.
  • Turtle L, Bali T, Buxton G, et al. Human T cell responses to Japanese encephalitis virus in health and disease. J Exp Med. 2016;213(7):1331–1352. doi:10.1084/jem.20151517. Epub 2016/06/01. PubMed PMID: 27242166; PubMed Central PMCID: PMCPMC4925015.
  • Kim JH, Patil AM, Choi JY, et al. CCR5 ameliorates Japanese encephalitis via dictating the equilibrium of regulatory CD4+Foxp3+ T and IL-17+CD4+ Th17 cells. J Neuroinflammation. 2016;13(1):223. doi:10.1186/s12974-016-0656-x. Epub 2016/07/22. PubMed PMID: 27439902; PubMed Central PMCID: PMCPMC5050958.
  • Gupta N, Hegde P, Lecerf M, et al. Japanese encephalitis virus expands regulatory T cells by increasing the expression of PD-L1 on dendritic cells. Eur J Immunol. 2014;44(5):1363–1374. doi:10.1002/eji.201343701
  • Kim JH, Choi JY, Kim SB, et al. Cd11chi dendritic cells regulate Ly-6Chi monocyte differentiation to preserve immune-privileged CNS in lethal neuroinflammation. Sci Rep. 2015;5(1):17548. doi:10.1038/srep17548
  • Li Y, Ye J, Yang X, et al. Infection of mouse bone marrow-derived dendritic cells by live attenuated Japanese encephalitis virus induces cells maturation and triggers T cells activation. Vaccine. 2011;29(4):855–862. doi:10.1016/j.vaccine.2010.09.108. Epub 2010/11/26. PubMed PMID: 21093495.
  • Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11(8):532–543. doi:10.1038/nri3014. Epub 2011/07/16. PubMed PMID: 21760609.
  • [ter] Meulen J, Sakho M, Koulemou K, et al. Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J Infect Dis. 2004;190(10):1821–1827. doi:10.1086/425016
  • Cantaert T, Schickel JN, Bannock JM, et al. Decreased somatic hypermutation induces an impaired peripheral B cell tolerance checkpoint. J Clin Invest. 2016;126(11):4289–4302. doi:10.1172/JCI84645. Epub 2016/11/02. PubMed PMID: 27701145; PubMed Central PMCID: PMCPMC5096912.
  • Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008;29(1):44–56. doi:10.1016/j.immuni.2008.05.009. Epub 2008/07/01. PubMed PMID: 18585065; PubMed Central PMCID: PMCPMC2630532.
  • Fujimoto M, Nakano M, Terabe F, et al. The influence of excessive IL-6 production In vivo on the development and function of Foxp3+ regulatory T cells. J Immunol. 2011;186(1):32–40. doi:10.4049/jimmunol.0903314. Epub 2010/11/26. PubMed PMID: 21106853.
  • Choy EH, De Benedetti F, Takeuchi T, et al. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020;16(6):335–345. doi:10.1038/s41584-020-0419-z
  • Angriman F, Ferreyro BL, Burry L, et al. Interleukin-6 receptor blockade in patients with COVID-19: placing clinical trials into context. Lancet Respir Med. 2021;9(6):655–664. doi:10.1016/S2213-2600(21)00139-9. Epub 2021/05/01. PubMed PMID: 33930329; PubMed Central PMCID: PMCPMC8078877 Baxter, Getinge, and MC3 Cardiopulmonary, outside of the submitted work. NDF reports personal fees from Xenios and Baxter, outside of the submitted work. All other authors declare no competing interests.
  • Bai F, Town T, Qian F, et al. IL-10 signaling blockade controls murine West Nile virus infection. PLoS Pathog. 2009;5(10):e1000610. doi:10.1371/journal.ppat.1000610. Epub 2009/10/10. PubMed PMID: 19816558; PubMed Central PMCID: PMCPMC2749443.
  • Sanchez AM, Zhu J, Huang X, et al. The development and function of memory regulatory T cells after acute viral infections. J Immunol. 2012;189(6):2805–2814. doi:10.4049/jimmunol.1200645. Epub 2012/08/03. PubMed PMID: 22855712; PubMed Central PMCID: PMCPMC3436958.
  • Brincks EL, Roberts AD, Cookenham T, et al. Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J Immunol. 2013;190(7):3438–3446. doi:10.4049/jimmunol.1203140. Epub 2013/03/08. PubMed PMID: 23467933; PubMed Central PMCID: PMCPMC3608733.
  • Roth C, Cantaert T, Colas C, et al. A modified mRNA vaccine targeting immunodominant NS epitopes protects against dengue virus infection in HLA class I transgenic mice. Front Immunol. 2019;10:1424. doi:10.3389/fimmu.2019.01424. Epub 2013/03/08. PubMed PMID: 31293584; PubMed Central PMCID: PMCPMC6598640.