1,423
Views
0
CrossRef citations to date
0
Altmetric
Emerging seasonal and pandemic influenza infections

Identification and relative abundance of naturally presented and cross-reactive influenza A virus MHC class I-restricted T cell epitopes

, , , &
Article: 2306959 | Received 13 Dec 2023, Accepted 14 Jan 2024, Published online: 08 Feb 2024

References

  • Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol: Mech Dis. 2008;3(1):499–522. doi:10.1146/annurev.pathmechdis.3.121806.154316
  • Sanjuán R, Nebot MR, Chirico N, et al. Viral mutation rates. J Virol. 2010;84(19):9733–9748. doi:10.1128/JVI.00694-10
  • Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010 Jul 22;6(7):e1001005. doi:10.1371/journal.ppat.1001005
  • Belongia EA, Simpson MD, King JP, et al. Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies. Lancet Infect Dis. 2016;16(8):942–951. doi:10.1016/S1473-3099(16)00129-8
  • Wu NC, Lv H, Thompson AJ, et al. Preventing an antigenically disruptive mutation in egg-based H3N2 seasonal influenza vaccines by mutational incompatibility. Cell Host Microbe. 2019;25(6):836–844. doi:10.1016/j.chom.2019.04.013
  • Zost SJ, Parkhouse K, Gumina ME, et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci USA. 2017;114(47):12578–12583. doi:10.1073/pnas.1712377114
  • Guthmiller JJ, Han J, Utset HA, et al. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature. 2022;602(7896):314–320. doi:10.1038/s41586-021-04356-8
  • Paules CI, Marston HD, Eisinger RW, et al. The pathway to a universal influenza vaccine. Immunity. 2017;47(4):599–603. doi:10.1016/j.immuni.2017.09.007
  • Guthmiller JJ, Han J, Li L, et al. First exposure to the pandemic H1N1 virus induced broadly neutralizing antibodies targeting hemagglutinin head epitopes. Sci Transl Med. 2021;13(596):eabg4535. doi:10.1126/scitranslmed.abg4535
  • Park J-K, Xiao Y, Ramuta MD, et al. Pre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge model. Nat Med. 2020;26(8):1240–1246. doi:10.1038/s41591-020-0937-x
  • Gruta L, Turner NL, J S. T cell mediated immunity to influenza: mechanisms of viral control. Trends Immunol. 2014;35(8):396–402. doi:10.1016/j.it.2014.06.004
  • Sridhar S, Begom S, Bermingham A, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 2013;19(10):1305–1312. doi:10.1038/nm.3350
  • Janssens Y, Joye J, Waerlop G, et al. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol. 2022;13:959379. doi:10.3389/fimmu.2022.959379
  • Wang Z, Wan Y, Qiu C, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun. 2015;6(1):6833. doi:10.1038/ncomms7833
  • Hayward AC, Wang L, Goonetilleke N, et al. Natural T Cell-mediated protection against seasonal and pandemic influenza. Results of the flu watch cohort study. Am J Respir Crit Care Med. 2015 Jun 15;191(12):1422–1431. doi:10.1164/rccm.201411-1988OC
  • Koutsakos M, Wheatley AK, Loh L, et al. Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity. Sci Transl Med. 2018;10(428):eaan8405. doi:10.1126/scitranslmed.aan8405
  • Croft NP, Smith SA, Wong YC, et al. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog. 2013;9(1):e1003129. doi:10.1371/journal.ppat.1003129
  • Tscharke DC, Croft NP, Doherty PC, et al. Sizing up the key determinants of the CD8+ T cell response. Nat Rev Immunol. 2015;15(11):705–716. doi:10.1038/nri3905
  • Scholtalbers J, Boegel S, Bukur T, et al. TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression. Genome Med. 2015 Nov 20;7:118. doi:10.1186/s13073-015-0240-5
  • Kowalewski DJ, Stevanović S. Biochemical large-scale identification of MHC class I ligands. In: van Endert P, editor. Antigen processing: methods and protocols. Totowa, NJ: Humana Press; 2013. p. 145–157.
  • Falk K, Rotzschke O, Stevanovic S, et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi:10.1038/351290a0
  • Käll L, Canterbury JD, Weston J, et al. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007 Nov;4(11):923–925. doi:10.1038/nmeth1113
  • Jurtz V, Paul S, Andreatta M, et al. NetMHCpan-4.0: improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol. 2017 Nov 1;199(9):3360–3368. doi:10.4049/jimmunol.1700893
  • Rammensee H, Bachmann J, Emmerich NP, et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999 Nov;50(3-4):213–219. doi:10.1007/s002510050595
  • Nelde A, Kowalewski DJ, Backert L, et al. HLA ligandome analysis of primary chronic lymphocytic leukemia (CLL) cells under lenalidomide treatment confirms the suitability of lenalidomide for combination with T-cell-based immunotherapy. Oncoimmunology. 2018;7(4):e1316438. doi:10.1080/2162402X.2017.1316438
  • Lazar C, Gatto L, Ferro M, et al. Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J Proteome Res. 2016 Apr 1;15(4):1116–1125. doi:10.1021/acs.jproteome.5b00981
  • Stead DA, Paton NW, Missier P, et al. Information quality in proteomics. Brief Bioinform. 2008 Mar;9(2):174–188. doi:10.1093/bib/bbn004
  • Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004 Jul 15;76(14):4193–4201. doi:10.1021/ac0498563
  • Zhang Y, Aevermann BD, Anderson TK, et al. Influenza research database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017 Jan 4;45(D1):D466–D474. doi:10.1093/nar/gkw857
  • Kuraku S, Zmasek CM, Nishimura O, et al. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W22–W28. doi:10.1093/nar/gkt389
  • Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019 Jul 19;20(4):1160–1166. doi:10.1093/bib/bbx108
  • Subramanian B, Gao S, Lercher MJ, et al. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019 Jul 2;47(W1):W270–W275. doi:10.1093/nar/gkz357
  • Thomsen MC, Nielsen M. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W281-W287. doi:10.1093/nar/gks469
  • Goddard TD, Huang CC, Meng EC, et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018 Jan;27(1):14–25. doi:10.1002/pro.3235
  • Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019 Jan 8;47(D1):D442–d450. doi:10.1093/nar/gky1106
  • Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, et al. HIV-1 Nef Downregulates MHC-I by a PACS-1- and PI3K-Regulated ARF6 Endocytic Pathway. Cell. 2002;111(6):853–866. doi:10.1016/S0092-8674(02)01162-5
  • Petersen JL, Morris CR, Solheim JC. Virus evasion of MHC class I molecule presentation. J Immunol. 2003 Nov 1;171(9):4473–4478. doi:10.4049/jimmunol.171.9.4473
  • Cohen GB, Gandhi RT, Davis DM, et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity. 1999;10(6):661–671. doi:10.1016/S1074-7613(00)80065-5
  • Compeer E, Flinsenberg T, van der Grein S, et al. antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol. 2012 Mar;3:37. doi:10.3389/fimmu.2012.00037
  • Krammer F, Smith GJD, Fouchier RAM, et al. Influenza. Nat Rev Dis Prim. 2018;4(1):3. doi:10.1038/s41572-018-0002-y
  • Thomas PG, Keating R, Hulse-Post DJ, et al. Cell-mediated protection in influenza infection. Emerg Infect Dis. 2006 Jan;12(1):48–54. doi:10.3201/eid1201.051237
  • Kasper MR, Collins KL. Nef-mediated disruption of HLA-A2 transport to the cell surface in T cells. J Virol. 2003 Mar;77(5):3041–3049. doi:10.1128/JVI.77.5.3041-3049.2003
  • Piguet V, Wan L, Borel C, et al. HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes. Nat Cell Biol. 2000 Mar;2(3):163–167. doi:10.1038/35004038
  • Koutsakos M, McWilliam HEG, Aktepe TE, et al. Downregulation of MHC class I expression by Influenza A and B Viruses. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.01158
  • Wu T, Guan J, Handel A, et al. Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nat Commun. 2019;10(1):2846. doi:10.1038/s41467-019-10661-8
  • Gale Jr. M, Tan SL, Katze MG. Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev. 2000 Jun;64(2):239–280. doi:10.1128/MMBR.64.2.239-280.2000
  • Krammer F, Palese P. Orthomyxoviridae: the viruses and their replication. In: Howley PM, Knipe DM, editor. Fields virology: emerging viruses. 7th ed. Philadelphia: Wolters Kluwer Health; 2020. p. 1224–1337.
  • Hensen L, Illing PT, Bridie Clemens E, et al. CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nat Commun. 2021;12(1):2931. doi:10.1038/s41467-021-23212-x
  • Gras S, Chadderton J, Del Campo Claudia M, et al. Reversed T cell receptor docking on a major histocompatibility class I complex limits involvement in the immune response. Immunity. 2016;45(4):749–760. doi:10.1016/j.immuni.2016.09.007
  • Cukalac T, Chadderton J, Zeng W, et al. The influenza virus–specific CTL immunodominance hierarchy in mice is determined by the relative frequency of high-avidity T cells. J Immunol. 2014;192(9):4061–4068. doi:10.4049/jimmunol.1301403
  • Habel JR, Nguyen AT, Rowntree LC, et al. HLA-A*11:01-restricted CD8+ T cell immunity against influenza A and influenza B viruses in indigenous and non-indigenous people. PLoS Pathog. 2022;18(3):e1010337. doi:10.1371/journal.ppat.1010337
  • Rammensee H-G, Friede T, Stevanović S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228. doi:10.1007/BF00172063
  • Rammensee H-G. Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol. 1995;7(1):85–96. doi:10.1016/0952-7915(95)80033-6
  • Berkhoff EG, Boon AC, Nieuwkoop NJ, et al. A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro. J Virol. 2004 May;78(10):5216–5222. doi:10.1128/JVI.78.10.5216-5222.2004
  • Rimmelzwaan GF, Boon AC, Voeten JT, et al. Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Res. 2004 Jul;103(1-2):97–100. doi:10.1016/j.virusres.2004.02.020
  • Berkhoff EG, Geelhoed-Mieras MM, Verschuren EJ, et al. The loss of immunodominant epitopes affects interferon-gamma production and lytic activity of the human influenza virus-specific cytotoxic T lymphocyte response in vitro. Clin Exp Immunol. 2007 May;148(2):296–306. doi:10.1111/j.1365-2249.2007.03340.x
  • Gras S, Kedzierski L, Valkenburg SA, et al. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12599–12604. doi:10.1073/pnas.1007270107