2,084
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Whole genome sequencing unravels cryptic circulation of divergent dengue virus lineages in the rainforest region of Nigeria

, , , , , , , , , , & show all
Article: 2307511 | Received 26 Sep 2023, Accepted 16 Jan 2024, Published online: 30 Jan 2024

References

  • Bhatia S, Bansal D, Patil S, et al. A retrospective study of climate change affecting dengue: evidences, challenges and future directions. Front Public Health. 2022;10:884645. doi:10.3389/fpubh.2022.884645
  • Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239:476–481. doi:10.1126/science.3277268
  • Dengue and severe dengue. [accessed 2023 Jun 26]. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
  • CDC. About dengue: What you need to know. Centers for Disease Control and Prevention. 2023 [accessed on 2023 Jun 26]. Available at: https://www.cdc.gov/dengue/about/index.html.
  • Kosasih H, Alisjahbana B, Nurhayati Q, et al. The epidemiology, virology and clinical findings of dengue virus infections in a cohort of Indonesian adults in Western Java. PLoS Negl Trop Dis. 2016;10:e0004390. doi:10.1371/journal.pntd.0004390
  • Onyedibe K, Dawurung J, Iroezindu M, et al. A cross sectional study of dengue virus infection in febrile patients presumptively diagnosed of malaria in Maiduguri and Jos plateau, Nigeria. Malawi Med J. 2018;30:276–282. doi:10.4314/mmj.v30i4.11
  • Dike VN, Lin Z, Wang Y, et al. Observed trends in diurnal temperature range over Nigeria. Atmos Ocean Sci Lett. 2019;12:131–139.
  • Echebima SI, Obafemi AA. The influence of local rainy and dry seasons on the diurnal temperature range in Nigeria. Atmos Clim Sci. 2023;13:314–332.
  • Okogun GRA, Anosike JC, Okere AN, et al. Ecology of mosquitoes of Midwestern Nigeria. J Vector Borne Dis. 2005;42:1–8.
  • Oladipo EK, Amanetu C, Gbadero TA, et al. Detectable anti-dengue virus IgM antibodies among healthy individuals in Ogbomoso, Oyo state, Nigeria. Am J Infect Dis. 2014:64–67. doi:10.3844/ajidsp.2014.64.67
  • Bello OA, Aminu M, Jatau ED. Seroprevalence of IgM antibodies to dengue fever virus among patients presenting with symptoms of fever in some hospitals in Kaduna State, Nigeria. Int. J. Sci. Res. 2014;5:1255–1259.
  • Adedayo F, Nioma I, Olanrewaju MB, et al. Serological evidence of recent dengue virus infection among febrile children in a Semi Arid Zone. Am J Infect Dis. 2013;9:7–10. doi:10.3844/ajidsp.2013.7.10
  • Onoja AB, Adeniji JA, Olaleye OD. High rate of unrecognized dengue virus infection in parts of the rainforest region of Nigeria. Acta Trop. 2016;160:39–43. doi:10.1016/j.actatropica.2016.04.007
  • Go C, Js A, Chukwuma OM, et al. Seroprevalence of dengue virus among children with febrile illness in Nnewi, Nigeria. J Med Res. 2018;4:24–30. doi:10.31254/jmr.2018.4107
  • Adeleke MA, Muhibi MA, Ajayi EIO, et al. Dengue virus specific immunoglobulin G antibodies among patients with febrile conditions in osogbo, southwestern Nigeria. Trop Biomed. 2016;33:1–7.
  • Julia AE, Clement I, Igho IB. Detection of yellow fever and dengue viruses in mosquitoes between 2014 and 2015 in Bayelsa and Benue States of Nigeria. Acta Entomologica Serbica. 2019;24(1):59–78.
  • Isa I, Ndams IS, Aminu M, et al. Genetic diversity of dengue virus serotypes circulating among Aedes mosquitoes in selected regions of northeastern Nigeria. One Health. 2021;13:100348. doi:10.1016/j.onehlt.2021.100348
  • Carey DE, Causey OR, Reddy S, et al. Dengue viruses from febrile patients in Nigeria, 1964-68. Lancet. 1971;1:105–106. doi:10.1016/S0140-6736(71)90840-3
  • Gainor EM, Harris E, LaBeaud AD. Uncovering the burden of dengue in Africa: considerations on magnitude, misdiagnosis, and ancestry. Viruses. 2022;14(2):233. doi:10.3390/v14020233
  • Onoja BA, Maiga M, Adesola RO, et al. Changing ecotypes of dengue virus 2 serotype in Nigeria and the emergence of cosmopolitan and Asian I lineages, 1966–2019. Vaccines. 2023;11(3):547. doi:10.3390/vaccines11030547
  • Matranga CB, Gladden-Young A, Qu J, et al. Unbiased deep sequencing of RNA viruses from clinical samples. J Vis Exp. 2016;113:54117.
  • Oguzie JU, Nwangwu UC, Oluniyi PE, et al. Metagenomic sequencing characterizes a wide diversity of viruses in field mosquito samples in Nigeria. Sci Rep. 2022;12:7616. doi:10.1038/s41598-022-11797-2
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi:10.1093/bioinformatics/btu170
  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257. doi:10.1186/s13059-019-1891-0
  • Nurk S, Meleshko D, Korobeynikov A, et al. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–834. doi:10.1101/gr.213959.116
  • Park D, Tomkins-Tinch C, Ye S, et al. broadinstitute/viral-ngs: v1.19.2. 2018. Available at https://zenodo.org/record/1167849.
  • Olson RD, Assaf R, Brettin T, et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023;51:678–689. doi:10.1093/nar/gkac1003
  • Chen Y, Ye W, Zhang Y, et al. High speed BLASTn: an accelerated MegaBLAST search tool. Nucleic Acids Res. 2015;43:7762–7768. doi:10.1093/nar/gkv784
  • Vilsker M, Moosa Y, Nooij S, et al. Genome detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics. 2019;35:871–873. doi:10.1093/bioinformatics/bty695
  • Kosakovsky Pond SL, Posada D, Gravenor MB, et al. GARD: a genetic algorithm for recombination detection. Bioinformatics. 2006;22:3096–3098. doi:10.1093/bioinformatics/btl474
  • Martin DP, Varsani A, Roumagnac P, et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021;7:veaa087. doi:10.1093/ve/veaa087
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi:10.1093/molbev/mst010
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi:10.1038/nmeth.4285
  • Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi:10.1093/molbev/msaa015
  • Sagulenko P, Puller V, Neher RA. Treetime: maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4:vex042. doi:10.1093/ve/vex042
  • Suchard MA, Lemey P, Baele G, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016), doi:10.1093/ve/vey016
  • Ayres DL, Darling A, Zwickl DJ, et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol. 2012;61:170–173. doi:10.1093/sysbio/syr100
  • Rambaut A, Drummond AJ, Xie D, et al. Posterior summarization in Bayesian phylogenetics Using Tracer 1.7. Syst Biol. 2018;67:901–904. doi:10.1093/sysbio/syy032
  • Ngwe Tun MM, Muta Y, Inoue S, et al. Persistence of neutralizing antibody against dengue virus 2 after 70 years from infection in Nagasaki. Biores Open Access. 2016;5:188–191. doi:10.1089/biores.2016.0016
  • Rubens Costa Lima J, Rouquayrol MZ, Monteiro Callado MR, et al. Interpretation of the presence of IgM and IgG antibodies in a rapid test for dengue: analysis of dengue antibody prevalence in Fortaleza City in the 20th year of the epidemic. Rev Soc Bras Med Trop. 2012;45:163–167. doi:10.1590/S0037-86822012000200005
  • World Health Organization. Dengue: Guidelines for diagnosis, treatment, prevention and control: New Edition. Geneva: World Health Organization; 2009. 2009 WHO/HTM/NTD/DEN/2009.1; [accessed on 2023 Sep 13].
  • Kassim FM, Izati MN, TgRogayah TAR, et al. Use of dengue NS1 antigen for early diagnosis of dengue virus infection. Southeast Asian J Trop Med Public Health. 2011;42:562–569.
  • Gyurech D, Schilling J, Schmidt-Chanasit J, et al. False positive dengue NS1 antigen test in a traveller with an acute Zika virus infection imported into Switzerland. Swiss Med Wkly. 2016;146:w14296.
  • Kraivong R, Punyadee N, Liszewski MK, et al. Dengue and the lectin pathway of the complement system. Viruses. 2021;13(7):1219. doi:10.3390/v13071219
  • Fagbami AH, Onoja AB. Dengue haemorrhagic fever: An emerging disease in Nigeria, West Africa. J Infect Public Health. 2018;11:757–762. doi:10.1016/j.jiph.2018.04.014
  • Ezihe EK, Chikezie FM, Egbuche CM, et al. Seasonal distribution and micro-climatic factors influencing the abundance of the malaria vectors in south-east Nigeria. J Mosq Res. 2017;7(3):15–26.
  • 2006 Population and Housing Census of the Federal Republic of Nigeria: National and State Population and Housing Tables: Priority Tables. National Population Commission; 2009. Available at: https://play.google.com/store/books/details?id=Y_FPAQAAIAAJ.
  • Chukwuekezie OC, Nwankwo AC, Nwosu EO. Diversity and distribution of Aedes mosquitoes in Nigeria. New York Sci J. 2018;11:50–57.
  • Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol. 2001;75:7769–7773.
  • Omatola CA, Onoja AB, Moses E, et al. Dengue in parts of the Guinea Savannah region of Nigeria and the risk of increased transmission. Int Health. 2021;13:248–252.
  • Mohammed AS, Odegbemi OB, Igwe C, et al. Prevalence and determinants of dengue virus immunoglobulin among febrile patients attending naval medical centre Victoria Island, Lagos State. Global Biosecurity. 2021;3(1). doi:10.31646/gbio.110
  • Suchi NK, Mohammed HI, Ademola AO, et al. Parallel and concurrent infection of dengue virus and plasmodium falciparum among patients with febrile illnesses attending Bingham University Health Centre, Karu, Nigeria. Int J Trop Dis Health. 2020;41(12):45–51.
  • Onoja AB. Emerging viral infections in human population. In: Rezaei N, editor. Integrated science of global epidemics. Cham: Springer International Publishing; 2023. p. 19–45.
  • Nosrat C, Altamirano J, Anyamba A, et al. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl Trop Dis. 2021;15:e0009182. doi:10.1371/journal.pntd.0009182
  • Joannides J, Dzodzomenyo M, Azerigyik F, et al. Species composition and risk of transmission of some Aedes-borne arboviruses in some sites in Northern Ghana. PLoS One. 2021;16:e0234675.
  • Omar K, Thabet HS, TagEldin RA, et al. Ecological niche modeling for predicting the potential geographical distribution of Aedes species (Diptera: Culicidae): A case study of Enugu State, Nigeria. Parasite Epidemiol Control. 2021;15:e00225. doi:10.1016/j.parepi.2021.e00225
  • Bassey BE, Braka F, Onyibe R, et al. Changing epidemiology of yellow fever virus in Oyo State, Nigeria. BMC Public Health. 2022;22:467. doi:10.1186/s12889-022-12871-0
  • Anand AM, Sistla S, Dhodapkar R, et al. Evaluation of NS1 antigen detection for early diagnosis of dengue in a tertiary hospital in Southern India. J Clin Diagn Res. 2016;10:DC01–DC04. doi:10.1111/crj.12367
  • Gan VC, Tan L-K, Lye DC, et al. Diagnosing dengue at the point-of-care: utility of a rapid combined diagnostic kit in Singapore. PLoS One. 2014;9:e90037. doi:10.1371/journal.pone.0090037
  • Vasilakis N, Tesh RB, Weaver SC. Sylvatic dengue virus Type 2 activity in humans, Nigeria, 1966. Emerg Infect Dis. 2008:502–504. doi:10.3201/eid1403.070843