2,840
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Herpes zoster mRNA vaccine induces superior vaccine immunity over licensed vaccine in mice and rhesus macaques

, , , , , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Article: 2309985 | Received 18 Aug 2023, Accepted 19 Jan 2024, Published online: 11 Feb 2024

References

  • Zerboni L, Sen N, Oliver SL, et al. Molecular mechanisms of Varicella Zoster Virus pathogenesis. Nat Rev Microbiol. 2014 Mar;12(3):197–210. doi:10.1038/nrmicro3215
  • Nordén R, Nilsson J, Samuelsson E, et al. Recombinant glycoprotein E of Varicella Zoster Virus contains glycan-peptide motifs that modulate B cell epitopes into discrete immunological signatures. Int J Mol Sci. 2019;20(4). doi:10.3390/ijms20040954
  • Chen T, Sun J, Zhang S, et al. Truncated glycoprotein E of varicella-zoster virus is an ideal immunogen for Escherichia coli-based vaccine design. Sci China Life Sci. 2023 Apr;66(4):743–753. doi:10.1007/s11427-022-2264-1
  • Lee SJ, Park HJ, Ko HL, et al. Evaluation of glycoprotein E subunit and live attenuated varicella-zoster virus vaccines formulated with a single-strand RNA-based adjuvant. Immun Inflamm Dis. 2020;8(2):216–227. doi:10.1002/iid3.297
  • Wang L, Zhu L, Zhu H. Efficacy of varicella (VZV) vaccination: an update for the clinician. Ther Adv Vaccines. 2016;4(1-2):20–31. doi:10.1177/2051013616655980
  • Lal H, Cunningham AL, Godeaux O, et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015;372(22):2087–2096. doi:10.1056/NEJMoa1501184
  • Cunningham AL, Lal H, Kovac M, et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med. 2016;375(11):1019–1032. doi:10.1056/NEJMoa1603800
  • Yawn BP, Gilden D. The global epidemiology of herpes zoster. Neurology. 2013;81(10):928–930. doi:10.1212/WNL.0b013e3182a3516e
  • Harpaz R, Ortega-Sanchez IR, Seward JF. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2008 Jun 6;57(Rr-5):1–30. quiz CE2-4.
  • Asada H. VZV-specific cell-mediated immunity, but not humoral immunity, correlates inversely with the incidence of herpes zoster and the severity of skin symptoms and zoster-associated pain: The SHEZ study. Vaccine. 2019;37(44):6776–6781. doi:10.1016/j.vaccine.2019.09.031
  • Steain M, Sutherland JP, Rodriguez M, et al. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J Virol. 2014;88(5):2704–2716. doi:10.1128/JVI.03445-13
  • Weinberg A, Levin MJ. VZV t cell-mediated immunity. Curr Top Microbiol Immunol. 2010;342:341–357.
  • Weinberg A, Zhang JH, Oxman MN, et al. Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J Infect Dis. 2009;200(7):1068–1077. doi:10.1086/605611
  • Haberthur K, Engelmann F, Park B, et al. CD4 t cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog 2011;7(11):e1002367. doi:10.1371/journal.ppat.1002367
  • Traina-Dorge V, Palmer BE, Coleman C, et al. Reactivation of simian varicella virus in rhesus macaques after CD4 T cell depletion. J Virol. 2019;93(3. doi:10.1128/JVI.01375-18
  • Park HB, Kim KC, Park JH, et al. Association of reduced CD4 T cell responses specific to Varicella Zoster Virus with high incidence of herpes zoster in patients with systemic lupus erythematosus. J Rheumatol. 2004 Nov;31(11):2151–2155.
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. doi:10.1038/nrd.2017.243
  • Verbeke R, Hogan MJ, Loré K, et al. Innate immune mechanisms of mRNA vaccines. Immunity. 2022;55(11):1993–2005. doi:10.1016/j.immuni.2022.10.014
  • Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780. doi:10.1038/nrd4278
  • Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–555. doi:10.1038/s41590-022-01163-9
  • Monslow MA, Elbashir S, Sullivan NL, et al. Immunogenicity generated by mRNA vaccine encoding VZV gE antigen is comparable to adjuvanted subunit vaccine and better than live attenuated vaccine in nonhuman primates. Vaccine. 2020;38(36):5793–5802. doi:10.1016/j.vaccine.2020.06.062
  • Zhao H, Shao X, Yu Y, et al. A therapeutic hepatitis B mRNA vaccine with strong immunogenicity and persistent virological suppression. bioRxiv. 2023:2022.11.18.517095.
  • Yang R, Deng Y, Huang B, et al. A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduct Target Ther. 2021;6(1):213. doi:10.1038/s41392-021-00634-z
  • Zhang H, Zhang L, Lin A, et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature. 2023;621(7978):396–403. doi:10.1038/s41586-023-06127-z
  • Lin A, Liang F, Thompson EA, et al. Rhesus macaque myeloid-derived suppressor cells demonstrate T cell inhibitory functions and are transiently increased after vaccination. J Immunol. 2018;200(1):286–294. doi:10.4049/jimmunol.1701005
  • Malavige GN, Jones L, Black AP, et al. Varicella Zoster Virus glycoprotein E-specific CD4+ T cells show evidence of recent activation and effector differentiation, consistent with frequent exposure to replicative cycle antigens in healthy immune donors. Clin Exp Immunol. 2008;152(3):522–531. doi:10.1111/j.1365-2249.2008.03633.x
  • Lu LL, Suscovich TJ, Fortune SM, et al. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18(1):46–61. doi:10.1038/nri.2017.106
  • Boeren M, Meysman P, Laukens K, et al. T cell immunity in HSV-1- and VZV-infected neural ganglia. Trends Microbiol 2023;31(1):51–61. doi:10.1016/j.tim.2022.07.008
  • Alameh MG, Tombácz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54(12):2877–2892.e7. doi:10.1016/j.immuni.2021.11.001
  • Connors J, Joyner D, Mege NJ, et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun Biol. 2023;6(1):188. doi:10.1038/s42003-023-04555-1
  • Lenart K, Hellgren F, Ols S, et al. A third dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances quality and quantity of immune responses. Mol Ther Methods Clin Dev. 2022;27:309–323. doi:10.1016/j.omtm.2022.10.001
  • Hellgren F, Cagigi A, Arcoverde Cerveira R, et al. Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses. Nat Commun. 2023;14(1):3713. doi:10.1038/s41467-023-39421-5
  • Thompson EA, Ols S, Miura K, et al. TLR-adjuvanted nanoparticle vaccines differentially influence the quality and longevity of responses to malaria antigen Pfs25. JCI Insight. 2018;3(10). doi:10.1172/jci.insight.120692
  • Jonsson-Schmunk K, Ghose R, Croyle MA. Immunization and drug metabolizing enzymes: focus on hepatic cytochrome P450 3A. Expert Rev Vaccines. 2021;20(5):623–634. doi:10.1080/14760584.2021.1899818
  • McColl ER, Croyle MA, Zamboni WC, et al. COVID-19 Vaccines and the virus: impact on drug metabolism and pharmacokinetics. Drug Metab Dispos. 2023;51(1):130–141. doi:10.1124/dmd.122.000934
  • Fiore J, Co-van der Mee MM, Maldonado A, et al. Safety and reactogenicity of the adjuvanted recombinant zoster vaccine: experience from clinical trials and post-marketing surveillance. Ther Adv Vaccines Immunother. 2021;9:25151355211057479.
  • Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine. 2009;27(12):1787–1796. doi:10.1016/j.vaccine.2009.01.091
  • Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21. doi:10.1016/j.smim.2018.05.001
  • Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–838. doi:10.1038/s41573-021-00283-5
  • Bogger-Goren S, Baba K, Hurley P, et al. Antibody response to varicella-zoster virus after natural or vaccine-induced infection. J Infect Dis. 1982;146(2):260–265. doi:10.1093/infdis/146.2.260
  • Levin MJ, Weinberg A. Immune responses to zoster vaccines. Hum Vaccin Immunother. 2019;15(4):772–777. doi:10.1080/21645515.2018.1560918
  • Tang H, Moriishi E, Okamoto S, et al. A community-based survey of varicella-zoster virus-specific immune responses in the elderly. J Clin Virol. 2012;55(1):46–50. doi:10.1016/j.jcv.2012.06.008
  • Hata A, Asanuma H, Rinki M, et al. Use of an inactivated varicella vaccine in recipients of hematopoietic-cell transplants. N Engl J Med. 2002;347(1):26–34. doi:10.1056/NEJMoa013441
  • Jennewein MF, Alter G. The immunoregulatory roles of antibody glycosylation. Trends Immunol 2017;38(5):358–372. doi:10.1016/j.it.2017.02.004
  • Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8(3):226–234. doi:10.1038/nrd2804
  • Kao D, Lux A, Schaffert A, et al. Igg subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. Eur J Immunol. 2017;47(12):2070–2079. doi:10.1002/eji.201747208
  • Mahan AE, Jennewein MF, Suscovich T, et al. Antigen-specific antibody glycosylation is regulated via vaccination. PLoS Pathog 2016;12(3):e1005456. doi:10.1371/journal.ppat.1005456
  • Sei JJ, Cox KS, Dubey SA, et al. Effector and central memory poly-functional CD4(+) and CD8(+) T cells are boosted upon ZOSTAVAX(®) vaccination. Front Immunol. 2015;6:553.
  • Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–571. doi:10.1038/s41586-020-2622-0
  • Vogel AB, Kanevsky I, Che Y, et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 2021;592(7853):283–289. doi:10.1038/s41586-021-03275-y
  • Chivukula S, Plitnik T, Tibbitts T, et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. NPJ Vaccines. 2021;6(1):153. doi:10.1038/s41541-021-00420-6
  • Coccia M, Collignon C, Hervé C, et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccines. 2017;2:25. doi:10.1038/s41541-017-0027-3
  • De Giovanni M, Cutillo V, Giladi A, et al. Spatiotemporal regulation of type I interferon expression determines the antiviral polarization of CD4(+) T cells. Nat Immunol. 2020;21(3):321–330. doi:10.1038/s41590-020-0596-6
  • Liang F, Lindgren G, Lin A, et al. Efficient targeting and activation of antigen-presenting cells In vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther. 2017;25(12):2635–2647. doi:10.1016/j.ymthe.2017.08.006
  • Nam HJ, Hong SJ, Lee A, et al. An adjuvanted zoster vaccine elicits potent cellular immune responses in mice without QS21. NPJ Vaccines. 2022;7(1):45. doi:10.1038/s41541-022-00467-z
  • Haberthur K, Messaoudi I. Animal models of Varicella Zoster Virus infection. Pathogens. 2013;2(2):364–382. doi:10.3390/pathogens2020364