922
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The structure of inactivated mature tick-borne encephalitis virus at 3.0 Å resolution

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2313849 | Received 16 Oct 2023, Accepted 30 Jan 2024, Published online: 11 Mar 2024

References

  • Ruzek D, Avšič Županc T, Borde J, et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019;164:23–51. doi:10.1016/j.antiviral.2019.01.014
  • Postler TS, Beer M, Blitvich BJ, et al. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol. 2023;168:224. doi:10.1007/s00705-023-05835-1
  • Deviatkin AA, Karganova GG, Vakulenko YA, et al. TBEV subtyping in terms of genetic distance. Viruses. 2020;12:1240. doi:10.3390/v12111240
  • Kolyasnikova NM, Ishmukhametov AA, Akimkin VG. The current state of the problem of tick-borne encephalitis in Russia and the world. Epidemiol Vaccinal Prevention. 2023;22:104–123. doi:10.31631/2073-3046-2023-22-1-104-123
  • Angulo FJ, Zhang P, Halsby K, et al. A systematic literature review of the effectiveness of tick-borne encephalitis vaccines in Europe. Vaccine. 2023;41:6914–6921. doi:10.1016/j.vaccine.2023.10.014
  • Andersson CR, Vene S, Insulander M, et al. Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine. 2010;28:2827–2831. doi:10.1016/j.vaccine.2010.02.001
  • Lotrič-Furlan S, Bogovič P, Avšič-Županc T, et al. Tick-borne encephalitis in patients vaccinated against this disease. J Intern Med. 2017;282:142–155. doi:10.1111/joim.12625
  • Stiasny K, Holzmann H, Heinz FX. Characteristics of antibody responses in tick-borne encephalitis vaccination breakthroughs. Vaccine. 2009;27:7021–7026. doi:10.1016/j.vaccine.2009.09.069
  • Pogodina VV, Scherbinina MS, Kolyasnikova NM, et al. Characteristics of morbidity of the tick-borne encephalitis in vaccinated. Epidemiol Vaccinal Prevent. 2020;18:90–97. doi:10.31631/2073-3046-2019-18-6-90-97
  • Tuchynskaya K, Volok V, Illarionova V, et al. Experimental assessment of possible factors associated with tick-borne encephalitis vaccine failure. Microorganisms. 2021;9:1172. doi:10.3390/microorganisms9061172
  • Chernokhaeva LL, Rogova YV, Kozlovskaya LI, et al. Experimental evaluation of the protective efficacy of tick-borne encephalitis (TBE) vaccines based on European and Far-eastern TBEV strains in mice and in vitro. Front Microbiol. 2018;9:1487. doi:10.3389/fmicb.2018.01487
  • Goryashchenko AS, Uvarova VI, Osolodkin DI, et al. Discovery of small molecule antivirals targeting tick-borne encephalitis virus. Annu Rep Med Chem. 2022;58:1–54. doi:10.1016/bs.armc.2022.08.007
  • Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5:796–812. doi:10.1038/s41564-020-0714-0
  • Prasad V, Miller A, Klose T, et al. Structure of the immature Zika virus at 9 Å resolution. Nat Struct Mol Biol. 2017;24:184–186. doi:10.1038/nsmb.3352
  • Newton ND, Hardy JM, Modhiran N, et al. The structure of an infectious immature flavivirus redefines viral architecture and maturation. Sci Adv. 2021;7:eabe4507. doi:10.1126/sciadv.abe4507
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3:13–22. doi:10.1038/nrmicro1067
  • Zhang X, Sheng J, Austin SK, et al. Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers. J Virol. 2015;89:743–750. doi:10.1128/JVI.02411-14
  • Zhang Y, Zhang W, Ogata S, et al. Conformational changes of the flavivirus E glycoprotein. Structure 2004;12:1607–1618. doi:10.1016/j.str.2004.06.019
  • Kaufmann B, Rossmann MG. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect. 2011;13:1–9. doi:10.1016/j.micinf.2010.09.005
  • Perera-Lecoin M, Meertens L, Carnec X, et al. Flavivirus entry receptors: an update. Viruses. 2013;6:69–88. doi:10.3390/v6010069
  • Smit JM, Moesker B, Rodenhuis-Zybert I, et al. Flavivirus cell entry and membrane fusion. Viruses. 2011;3:160–171. doi:10.3390/v3020160
  • Stiasny K, Kössl C, Lepault J, et al. Characterization of a structural intermediate of flavivirus membrane fusion. PLoS Pathog. 2007;3:e20. doi:10.1371/journal.ppat.0030020
  • Fuzik T, Formanova P, Ruzek D, et al. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun. 2018;9:436. doi:10.1038/s41467-018-02882-0
  • Pulkkinen LIA, Barrass SV, Domanska A, et al. Molecular organisation of tick-borne encephalitis virus. Viruses. 2022;14:792. doi:10.3390/v14040792
  • Anastasina M, Füzik T, Domanska A, et al. The structure of immature tick-borne encephalitis virus. bioRxiv preprint 2023.08.04.551633v1. doi:10.1101/2023.08.04.551633
  • Vorovitch MF, Samygina VR, Pichkur E, et al. Preparation and characterization of inactivated tick-borne encephalitis virus samples for single-particle imaging at the European XFEL. Acta Cryst. 2024;D80:44–59. doi:10.1107/S2059798323010562
  • Rosenthal PB, Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol. 2003;333:721–745. doi:10.1016/j.jmb.2003.07.013
  • Rey F, Heinz F, Mandl C, et al. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 1995;375:291–298. doi:10.1038/375291a0
  • Sevvana M, Long F, Miller AS, et al. Refinement and analysis of the mature Zika virus cryo-EM structure at 3.1 Å resolution. Structure. 2018;26:1169–1177.e3. doi:10.1016/j.str.2018.05.006
  • Vorovitch MF, Grishina KG, Volok VP, et al. Evervac: phase I/II study of immunogenicity and safety of a new adjuvant-free TBE vaccine cultivated in Vero cell culture. Hum Vaccin Immunother. 2020;16:2123–2130. doi:10.1080/21645515.2020.1757990
  • Chernokhaeva LL, Rogova YV, Vorovitch MF, et al. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin. Vaccine. 2016;34:2354–2361. doi:10.1016/j.vaccine.2016.03.041
  • Yang X, Qi J, Peng R, et al. Molecular basis of a protective/neutralizing monoclonal antibody targeting envelope proteins of both tick-borne encephalitis virus and Louping ill virus. J Virol. 2019;93:e02132–18. doi:10.1128/JVI.02132-18
  • Agudelo M, Palus M, Keeffe JR, et al. Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J Exp Med. 2021;218:e20210236. doi:10.1084/jem.20210236
  • Baykov IK, Chojnowski G, Pachl P, et al. Structural insights into tick-borne encephalitis virus neutralization and animal protection by a therapeutic antibody. bioRxiv preprint 2021.07.28.453943. doi:10.1101/2021.07.28.453943
  • Barrows NJ, Campos RK, Liao K-C, et al. Biochemistry and molecular biology of flaviviruses. Chem Rev. 2018;118:4448–4482. doi:10.1021/acs.chemrev.7b00719
  • Shanshin DV, Borisevich SS, Bondar AA, et al. Can modern molecular modeling methods help find the area of potential vulnerability of flaviviruses? Int J Mol Sci. 2022;23:7721. doi:10.3390/ijms23147721
  • Matveev A, Matveev L, Stronin O, et al. Characterization of neutralizing monoclonal antibody against tick-borne encephalitis virus in vivo. Vaccine. 2020;38:4309–4315. doi:10.1016/j.vaccine.2020.04.051
  • Jiang W, Tang L. Atomic cryo-EM structures of viruses. Curr Opin Struct Biol. 2017;46:122–129. doi:10.1016/j.sbi.2017.07.002
  • de Oliveira GA, Silva JL. Cryo-EM to visualize the structural organization of viruses. Curr Opin Virol. 2021;49:86–91. doi:10.1016/j.coviro.2021.04.011
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucl Acids Res. 2000;28:235–242. doi:10.1093/nar/28.1.235
  • Zhang X, Ge P, Yu X, et al. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat Struct Mol Biol. 2013;20:105–110. doi:10.1038/nsmb.2463
  • Renner M, Dejnirattisai W, Carrique L, et al. Flavivirus maturation leads to the formation of an occupied lipid pocket in the surface glycoproteins. Nat Commun. 2021;12:1238. doi:10.1038/s41467-021-21505-9
  • Hardy JM, Newton ND, Modhiran N, et al. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat Commun. 2021;12:3266. doi:10.1038/s41467-021-22773-1
  • Moiseenko A, Zhang Y, Vorovitch MF, et al. Structural diversity of tick-borne encephalitis virus particles in the inactivated vaccine based on strain Sofjin. Emerg Microb Infect. 2024;13:2290833. doi:10.1080/22221751.2023.2290833
  • Khare B, Klose T, Fang Q, et al. Structure of Usutu virus SAAR-1776 displays fusion loop asymmetry. Proc Natl Acad Sci USA. 2021;118:e2107408. doi:10.1073/pnas.2107408118
  • Kostyuchenko V, Lim E, Zhang S, et al. Structure of the thermally stable Zika virus. Nature. 2016;533:425–428. doi:10.1038/nature17994
  • Sirohi D, Chen Z, Sun L, et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science. 2016;352:467–470. doi:10.1126/science.aaf5316
  • Wiesner L, Schmutte C, Steffen I. Susceptibility of tick-borne encephalitis virus to inactivation by heat, acidic pH, chemical, or UV treatment. J Infect Dis. 2021;223:714–718. doi:10.1093/infdis/jiaa405
  • Vorovitch MF, Kozlovskaya LI, Romanova LI, et al. Genetic description of a tick-borne encephalitis virus strain Sofjin with the longest history as a vaccine strain. SpringerPlus. 2015;4:761. doi:10.1186/s40064-015-1561-y
  • Tegunov D, Cramer P. Real-time cryo-electron microscopy data processing with Warp. Nat Methods. 2019;16:1146–1152. doi:10.1038/s41592-019-0580-y
  • Punjani A, Rubinstein J, Fleet D, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017;14:290–296. doi:10.1038/nmeth.4169
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi:10.1038/s41586-021-03819-2
  • Emsley P, Lohkamp B, Scott WG, et al. Features and development of Coot. Acta Cryst. 2010;D66:486–501. doi:10.1107/S0907444910007493
  • Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Cryst. 2019;D75:861–877. doi:10.1107/S2059798319011471
  • Croll TI. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Cryst. 2018;D74:519–530. doi:10.1107/S2059798318002425
  • Agirre J, Atanasova M, Bagdonas H, et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Cryst. 2023;D79:449–461. doi:10.1107/S2059798323003595
  • The PyMOL Molecular Graphics System. Version 1.2r3pre, Schrödinger, LLC.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi:10.1002/jcc.20084
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 2020;30:70–82.
  • Voss NR, Gerstein M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 2010;38:W555–W562. doi:10.1093/nar/gkq395.