2,569
Views
0
CrossRef citations to date
0
Altmetric
Drug Resistance and Novel Antimicrobial Agents

ESKAPE in China: epidemiology and characteristics of antibiotic resistance

, , , , , , , & show all
Article: 2317915 | Received 21 Dec 2023, Accepted 08 Feb 2024, Published online: 23 Feb 2024

References

  • Jee Y, Carlson J, Rafai E, et al. Antimicrobial resistance: a threat to global health. Lancet Infect Dis. 2018;18(9):939–940. doi:10.1016/S1473-3099(18)30471-7
  • Antimicrobial Resistance C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • <apo-nid63983.pdf>.
  • Xiao Y. Antimicrobial stewardship in China: systems, actions and future strategies. Clin Infect Dis. 2018;67(suppl_2):S135–S141. doi:10.1093/cid/ciy641
  • Xiao Y, Li L. A national action plan to contain antimicrobial resistance in China: contents, actions and expectations. AMR Control. 2017;15(3):17–20.
  • Ding L, Hu F. China's new national action plan to combat antimicrobial resistance (2022–25). J Antimicrob Chemother. 2023;78(2):558–560. doi:10.1093/jac/dkac435
  • Zong Z, Wu A, Hu B. Infection control in the era of antimicrobial resistance in China: progress, challenges, and opportunities. Clin Infect Dis. 2020;71(Suppl 4):S372–S378. doi:10.1093/cid/ciaa1514
  • Hu F, Zhu D, Wang F, et al. Current status and trends of antibacterial resistance in China. Clin Infect Dis. 2018;67(suppl_2):S128–S134. doi:10.1093/cid/ciy657
  • Chen Y, Ji J, Ying C, et al. Blood bacterial resistant investigation collaborative system (BRICS) report: a national surveillance in China from 2014 to 2019. Antimicrob Resist Infect Control. 2022;11(1):17. doi:10.1186/s13756-022-01055-5
  • Liu Y-Y, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi:10.1016/S1473-3099(15)00424-7
  • Fang L-X, Chen C, Cui C-Y, et al. Emerging high-level tigecycline resistance: novel tetracycline destructases spread via the mobile Tet(X). Bioessays. 2020;42(8):e2000014. doi:10.1002/bies.202000014
  • Shi Q, Yin D, Han R, et al. Emergence and recovery of ceftazidime-avibactam resistance in blaKPC-33-Harboring Klebsiella pneumoniae Sequence Type 11 Isolates in China. Clin Infect Dis. 2020;71(Suppl 4):S436–S439. doi:10.1093/cid/ciaa1521
  • Chen H, et al. Drivers of methicillin-resistant staphylococcus aureus (MRSA) lineage replacement in China. Genome Med. 2021;13:1–14. doi:10.1186/s13073-020-00808-4
  • Zhou K, Xiao T, David S, et al. Novel subclone of carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China. Emerg Infect Dis. 2020;26(2):289–297. doi:10.3201/eid2602.190594
  • Tacconelli E, Sifakis F, Harbarth S, et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99–e106. doi:10.1016/S1473-3099(17)30485-1
  • Cornaglia G, Hryniewicz W, Jarlier V, et al. European recommendations for antimicrobial resistance surveillance. Clin Microbiol Infect. 2004;10(4):349–383. doi:10.1111/j.1198-743X.2004.00887.x
  • Organization, W.H. GLASS whole-genome sequencing for surveillance of antimicrobial resistance; 2020.
  • Ding L, Guo Y, Hu F. Antimicrobial resistance surveillance: China's nearly 40-year effort. Int J Antimicrob Agents. 2023;62(2):106869. doi:10.1016/j.ijantimicag.2023.106869
  • Yang W, Ding L, Han R, et al. Current status and trends of antimicrobial resistance among clinical isolates in China: a retrospective study of CHINET from 2018 to 2022. One Health Advances. 2023;1(1):8. doi:10.1186/s44280-023-00009-9
  • Jing C, Wang C. Surveillance of bacterial resistance at Children's Hospital of Chongqing Medical University in 2015. Chinese J Infect Chemother. 2017;6:413–420.
  • Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020–18. doi:10.1128/CMR.00020-18
  • Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88:26–40. doi:10.1007/s00239-019-09914-3
  • Xiao YH, Giske CG, Wei Z-Q, et al. Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist Updat. 2011;14(4-5):236–250. doi:10.1016/j.drup.2011.07.001
  • Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi:10.1016/S1473-3099(18)30605-4
  • Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018;41:76–82. doi:10.1016/j.mib.2017.11.030
  • Vu J, Carvalho J. Enterococcus: review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. Front Biol (Beijing). 2011;6:357–366. doi:10.1007/s11515-011-1167-x
  • Shrestha S, Kharel S, Homagain S, et al. Prevalence of vancomycin-resistant enterococci in Asia-A systematic review and meta-analysis. J Clin Pharm Ther. 2021;46(5):1226–1237. doi:10.1111/jcpt.13383
  • Zheng B, Tomita H, Xiao YH, et al. Molecular characterization of vancomycin-resistant enterococcus faecium isolates from mainland China. J Clin Microbiol. 2007;45(9):2813–2818. doi:10.1128/JCM.00457-07
  • Shen J, Long X, Jiang Q, et al. Genomic characterization of a vancomycin-resistant strain of Enterococcus faecium harboring a rep2 Plasmid. Infect Drug Resist. 2023;16:1153–1158. doi:10.2147/IDR.S398913
  • Zhou W, Zhou H, Sun Y, et al. Characterization of clinical enterococci isolates, focusing on the vancomycin-resistant enterococci in a tertiary hospital in China: based on the data from 2013 to 2018. BMC Infect Dis. 2020;20(1):356. doi:10.1186/s12879-020-05078-4
  • Yan MY, He Y-H, Ruan G-J, et al. The prevalence and molecular epidemiology of vancomycin-resistant Enterococcus (VRE) carriage in patients admitted to intensive care units in Beijing, China. J Microbiol Immunol Infect. 2023;56(2):351–357. doi:10.1016/j.jmii.2022.07.001
  • Sun H-L, Liu C, Zhang J-J, et al. Molecular characterization of vancomycin-resistant enterococci isolated from a hospital in Beijing, China. J Microbiol Immunol Infect. 2019;52(3):433–442. doi:10.1016/j.jmii.2018.12.008
  • Li L, et al. The first investigation of a nosocomial outbreak caused by ST80 vancomycin-resistant Enterococci faecium in China. J Hosp Infect. 2023. doi:10.1016/j.jhin.2023.10.020.
  • Dadashi M, Sharifian P, Bostanshirin N, et al. The global prevalence of daptomycin, tigecycline, and linezolid-resistant Enterococcus faecalis and Enterococcus faecium strains from human clinical samples: a systematic review and meta-analysis. Front Med (Lausanne). 2021;8:720647. doi:10.3389/fmed.2021.720647
  • Ma X, Zhang F, Bai B, et al. Linezolid resistance in Enterococcus faecalis associated with urinary tract infections of patients in a tertiary hospitals in China: resistance mechanisms, virulence, and risk factors. Front Public Health. 2021;9:570650. doi:10.3389/fpubh.2021.570650
  • Sun W, Liu H, Liu J, et al. Detection of optrA and poxtA genes in linezolid-resistant Enterococcus isolates from fur animals in China. Lett Appl Microbiol. 2022;75(6):1590–1595. doi:10.1111/lam.13826
  • Krause AL, Stinear TP, Monk IR. Barriers to genetic manipulation of Enterococci: current approaches and future directions. FEMS Microbiol Rev. 2022;46(6):fuac036. doi:10.1093/femsre/fuac036
  • Sadowy E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid. 2018;99:89–98. doi:10.1016/j.plasmid.2018.09.011
  • Antonelli A, D’Andrea MM, Brenciani A, et al. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother. 2018;73(7):1763–1769. doi:10.1093/jac/dky088
  • Yi M, Zou J, Zhao J, et al. Emergence of optrA-mediated linezolid resistance in Enterococcus faecium: a molecular investigation in a Tertiary Hospital of Southwest China from 2014–2018. Infect Drug Resist. 2022;15:13–20. doi:10.2147/IDR.S339761
  • Abdullahi IN, Lozano C, Juárez-Fernández G, et al. Nasotracheal enterococcal carriage and resistomes: detection of optrA-, poxtA-and cfrD-carrying strains in migratory birds, livestock, pets, and in-contact humans in Spain. Eur J Clin Microbiol Infect Dis. 2023;42(5):569–581. doi:10.1007/s10096-023-04579-9
  • Monteiro Marques J, et al. Dissemination of Enterococcal genetic lineages: a one health perspective. Antibiotics. 2023;12(7):1140. doi:10.3390/antibiotics12071140
  • Wu M, et al. Prevalence of methicillin-resistant Staphylococcus aureus in healthy Chinese population: a system review and meta-analysis. PLoS One. 2019;14(10):e0223599.
  • Ji S, Jiang S, Wei X, et al. In-host evolution of daptomycin resistance and heteroresistance in methicillin-resistant staphylococcus aureus strains from three endocarditis patients. J Infect Dis. 2020;221(Suppl 2):S243–S252. doi:10.1093/infdis/jiz571
  • Jiang S, Zhuang H, Zhu F, et al. The Role of mprF mutations in Seesaw effect of daptomycin-resistant methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2022;66(1):e01295–21. doi:10.1128/AAC.01295-21
  • Xu Y, Wang B, Zhao H, et al. In vitro activity of vancomycin, teicoplanin, linezolid and daptomycin against methicillin-resistant staphylococcus aureus Isolates collected from Chinese hospitals in 2018–2020. Infect Drug Resist. 2021;14:5449–5456. doi:10.2147/IDR.S340623
  • Jian Y, Lv H, Liu J, et al. Dynamic changes of Staphylococcus aureus susceptibility to Vancomycin, Teicoplanin, and Linezolid in a Central Teaching Hospital in Shanghai, China, 2008–2018. Front Microbiol. 2020;11:908. doi:10.3389/fmicb.2020.00908
  • Jin Y, et al. Genomic epidemiology and characterization of methicillin-resistant Staphylococcus aureus from bloodstream infections in China. MSystems. 2021;6(6):e00837–21.
  • Uehara Y. Current status of staphylococcal cassette chromosome mec (SCC mec). Antibiotics. 2022;11(1):86. doi:10.3390/antibiotics11010086
  • Wang W, Hu Y, Baker M, et al. Novel SCCmec type XV (7A) and two pseudo-SCCmec variants in foodborne MRSA in China. J Antimicrob Chemother. 2022;77(4):903–909. doi:10.1093/jac/dkab500
  • Chen Y, Sun L, Ba X, et al. Epidemiology, evolution and cryptic susceptibility of methicillin-resistant Staphylococcus aureus in China: a whole-genome-based survey. Clin Microbiol Infect. 2022;28(1):85–92. doi:10.1016/j.cmi.2021.05.024
  • Chen Y, Sun L, Wu D, et al. Using core-genome multilocus sequence typing to monitor the changing epidemiology of methicillin-resistant Staphylococcus aureus in a teaching hospital. Clin Infect Dis. 2018;67(suppl_2):S241–S248. doi:10.1093/cid/ciy644
  • Li S, Sun S, Yang C, et al. The changing pattern of population structure of Staphylococcus aureus from bacteremia in China from 2013 to 2016: ST239-030-MRSA replaced by ST59-t437. Front Microbiol. 2018;9:332. doi:10.3389/fmicb.2018.00332
  • Xiao M, Wang H, Zhao Y, et al. National surveillance of methicillin-resistant Staphylococcus aureus in China highlights a still-evolving epidemiology with 15 novel emerging multilocus sequence types. J Clin Microbiol. 2013;51(11):3638–3644. doi:10.1128/JCM.01375-13
  • Wu D, Wang Z, Wang H, et al. Predominance of ST5-II-t311 clone among healthcare-associated methicillin-resistant Staphylococcus aureus isolates recovered from Zhejiang, China. Int J Infect Dis. 2018;71:107–112. doi:10.1016/j.ijid.2018.04.798
  • Hung W-C, et al. Molecular evolutionary pathways toward two successful community-associated but multidrug-resistant ST59 methicillin-resistant Staphylococcus aureus lineages in Taiwan: dynamic modes of mobile genetic element salvages. PLoS One. 2016;11(9):e0162526.
  • Yang X, et al. Multiresistant ST59-SCC mec IV-t437 clone with strong biofilm-forming capacity was identified predominantly in MRSA isolated from Chinese children. BMC Infect Dis. 2017;17:1–12. doi:10.1186/s12879-016-2122-x
  • Lee AS, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):1–23.
  • Jiang N, Li J, Feßler AT, et al. Novel pseudo-staphylococcal cassette chromosome mec element (φSCCmecT55) in MRSA ST9. J Antimicrob Chemother. 2019;74(3):819–820. doi:10.1093/jac/dky457
  • Zhou W, Jin Y, Shen P, et al. Novel SCCmec variants in clonal complex 398 and lineage-specific pseudo-SCC mec identified in ST88 MRSA from invasive bloodstream infections in China. J Antimicrob Chemother. 2023;78(9):2366–2375. doi:10.1093/jac/dkad250
  • Proulx MK, Palace SG, Gandra S, et al. Reversion from methicillin susceptibility to methicillin resistance in Staphylococcus aureus during treatment of bacteremia. J Infect Dis. 2016;213(6):1041–1048. doi:10.1093/infdis/jiv512
  • Li M, Wang Y, Zhu Y, et al. Increased community-associated infections caused by Panton-Valentine Leukocidin-negative MRSA, Shanghai, 2005–2014. Emerg Infect Dis. 2016;22(11):1988–1991. doi:10.3201/eid2211.160587
  • Wang B, Xu Y, Zhao H, et al. Methicillin-resistant Staphylococcus aureus in China: a multicentre longitudinal study and whole-genome sequencing. Emerg Microbes Infect. 2022;11(1):532–542. doi:10.1080/22221751.2022.2032373
  • Chen H, Yin Y, van Dorp L, et al. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med. 2021;13(1):171. doi:10.1186/s13073-021-00992-x
  • Mork RL, Hogan PG, Muenks CE, et al. Longitudinal, strain-specific Staphylococcus aureus introduction and transmission events in households of children with community-associated meticillin-resistant S aureus skin and soft tissue infection: a prospective cohort study. Lancet Infect Dis. 2020;20(2):188–198. doi:10.1016/S1473-3099(19)30570-5
  • Hogan PG, Mork RL, Thompson RM, et al. Environmental methicillin-resistant Staphylococcus aureus contamination, persistent colonization, and subsequent skin and soft tissue infection. JAMA Pediatr. 2020;174(6):552–562. doi:10.1001/jamapediatrics.2020.0132
  • Sun L, Zhuang H, Di L, et al. Transmission and microevolution of methicillin-resistant Staphylococcus aureus ST88 strain among patients, healthcare workers, and household contacts at a trauma and orthopedic ward. Front Public Health. 2023;10:1053785. doi:10.3389/fpubh.2022.1053785
  • Richardson EJ, Bacigalupe R, Harrison EM, et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nature Ecology & Evolution. 2018;2(9):1468–1478. doi:10.1038/s41559-018-0617-0
  • Dai Y, Liu J, Guo W, et al. Decreasing methicillin-resistant Staphylococcus aureus (MRSA) infections is attributable to the disappearance of predominant MRSA ST239 clones, Shanghai, 2008–2017. Emerg Microbes Infect. 2019;8(1):471–478. doi:10.1080/22221751.2019.1595161
  • Jian Y, Zhao L, Zhao N, et al. Increasing prevalence of hypervirulent ST5 methicillin susceptible Staphylococcus aureus subtype poses a serious clinical threat. Emerg Microbes Infect. 2021;10(1):109–122. doi:10.1080/22221751.2020.1868950
  • Park S, Ronholm J. Staphylococcus aureus in agriculture: lessons in evolution from a multispecies pathogen. Clin Microbiol Rev. 2021;34(2):e00182–20. doi:10.1128/CMR.00182-20
  • Shariati A, Dadashi M, Moghadam MT, et al. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep. 2020;10(1):12689. doi:10.1038/s41598-020-69058-z
  • Shen P, Zhou K, Wang Y, et al. High prevalence of a globally disseminated hypervirulent clone, Staphylococcus aureus CC121, with reduced vancomycin susceptibility in community settings in China. J Antimicrob Chemother. 2019;74(9):2537–2543. doi:10.1093/jac/dkz232
  • Liang J, Hu Y, Fu M, et al. Resistance and molecular characteristics of methicillin-resistant Staphylococcus aureus and heterogeneous vancomycin-intermediate Staphylococcus aureus. Infect Drug Resist. 2023;16:379–388. doi:10.2147/IDR.S392908
  • Ding L, et al. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin Microbiol Rev. 2023;36(4):e0000823.
  • Wang M, Earley M, Chen L, et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infect Dis. 2022;22(3):401–412. doi:10.1016/S1473-3099(21)00399-6
  • Yang Z-Q, Huang Y-L, Zhou H-W, et al. Persistent carbapenem-resistant Klebsiella pneumoniae: a Trojan horse. Lancet Infect Dis. 2018;18(1):22–23. doi:10.1016/S1473-3099(17)30627-8
  • Zhang R, Liu L, Zhou H, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017;19:98–106. doi:10.1016/j.ebiom.2017.04.032
  • Hu Y, Liu C, Shen Z, et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008–2018. Emerg Microbes Infect. 2020;9(1):1771–1779. doi:10.1080/22221751.2020.1799721
  • Zha L, Li S, Ren Z, et al. Clinical management of infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a nationwide survey of tertiary hospitals in mainland China. J Infect. 2022;84(6):e108–e110. doi:10.1016/j.jinf.2022.03.023
  • Wei ZQ, et al. Plasmid-Mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother. 2007;51(2):763–765. doi:10.1128/AAC.01053-06
  • Liu J, Yu J, Chen F, et al. Emergence and establishment of KPC-2-producing ST11 Klebsiella pneumoniae in a general hospital in Shanghai, China. Eur J Clin Microbiol Infect Dis. 2018;37(2):293–299. doi:10.1007/s10096-017-3131-4
  • Yang X, Dong N, Chan EW-C, et al. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 2021;29(1):65–83. doi:10.1016/j.tim.2020.04.012
  • Tang Y, Li G, Liang W, et al. Translocation of Carbapenemase Gene blaKPC-2 both internal and external to transposons occurs via novel structures of Tn 1721 and exhibits distinct movement patterns. Antimicrob Agents Chemother. 2017;61(10):e01151–17. doi:10.1128/AAC.01151-17
  • Fu P, Tang Y, Li G, et al. Pandemic spread of blaKPC-2 among Klebsiella pneumoniae ST11 in China is associated with horizontal transfer mediated by IncFII-like plasmids. Int J Antimicrob Agents. 2019;54(2):117–124. doi:10.1016/j.ijantimicag.2019.03.014
  • Yang X, Sun Q, Li J, et al. Molecular epidemiology of carbapenem-resistant hypervirulent Klebsiella pneumoniae in China. Emerg Microbes Infect. 2022;11(1):841–849. doi:10.1080/22221751.2022.2049458
  • Yang Y, Yang Y, Chen G, et al. Molecular characterization of carbapenem-resistant and virulent plasmids in Klebsiella pneumoniae from patients with bloodstream infections in China. Emerg Microbes Infect. 2021;10(1):700–709. doi:10.1080/22221751.2021.1906163
  • Raro OHF, da Silva RMC, Filho EMR, et al. Carbapenemase-producing Klebsiella pneumoniae from transplanted patients in Brazil: phylogeny, resistome, virulome and mobile genetic elements harboring bla (KPC-) (2) or bla (NDM-) (1). Front Microbiol. 2020;11:1563. doi:10.3389/fmicb.2020.01563
  • Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci. 2019;1457(1):61–91. doi:10.1111/nyas.14223
  • Yin L, Lu L, He L, et al. Molecular characteristics of carbapenem-resistant gram-negative bacilli in pediatric patients in China. BMC Microbiol. 2023;23(1):136. doi:10.1186/s12866-023-02875-0
  • Zhang X, Xue J, Shen M-J, et al. Molecular typing and drug resistance analysis of carbapenem-resistant Klebsiella pneumoniae from paediatric patients in China. J Infect Dev Ctries. 2022;16(11):1726–1731. doi:10.3855/jidc.17003
  • Xiong Z, Zhang C, Sarbandi K, et al. Clinical and molecular epidemiology of carbapenem-resistant Enterobacteriaceae in pediatric inpatients in South China. Microbiol Spectr. 2023;11(6):e0283923. doi:10.1128/spectrum.02839-23
  • Wu Y, et al. Global phylogeography and genomic epidemiology of carbapenem-resistant bla(OXA-232)-carrying Klebsiella pneumoniae sequence type 15 lineage. Emerg Infect Dis. 2023;29(11):2246–2256.
  • Wang C-H, Ma L, Huang L-Y, et al. Molecular epidemiology and resistance patterns of bla(OXA-48)Klebsiella pneumoniae and Escherichia coli: a nationwide multicenter study in Taiwan. J Microbiol Immunol Infect. 2021;54(4):665–672. doi:10.1016/j.jmii.2020.04.006
  • Li Z, Ding Z, Yang J, et al. Carbapenem-resistant Klebsiella pneumoniae in Southwest China: molecular characteristics and risk factors caused by KPC and NDM producers. Infect Drug Resist. 2021;14:3145–3158. doi:10.2147/IDR.S324244
  • Zhang Y, Jin L, Ouyang P, et al. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrob Chemother. 2020;75(2):327–336. doi:10.1093/jac/dkz446
  • Tang B, Yang A, Liu P, et al. Outer membrane vesicles transmittingblaNDM-1 Mediate the emergence of Carbapenem-resistant Hypervirulent Klebsiella pneumoniae. Antimicrob Agents Chemother. 2023;67(5):e0144422. doi:10.1128/aac.01444-22
  • Zhang Y, Wang X, Wang S, et al. Emergence of Colistin resistance in Carbapenem-resistant Hypervirulent Klebsiella pneumoniae under the pressure of Tigecycline. Front Microbiol. 2021;12:756580. doi:10.3389/fmicb.2021.756580
  • Yao H, Qin S, Chen S, et al. Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infect Dis. 2018;18(1):25. doi:10.1016/S1473-3099(17)30628-X
  • Wong MHY, Shum H-P, Chen JHK, et al. Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infect Dis. 2018;18(1):24. doi:10.1016/S1473-3099(17)30629-1
  • Zhang R, Lin D, Chan EW-c, et al. Emergence of Carbapenem-resistant Serotype K1 Hypervirulent Klebsiella pneumoniae Strains in China. Antimicrob Agents Chemother. 2016;60(1):709–711. doi:10.1128/AAC.02173-15
  • Zhang Y, Zeng J, Liu W, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect. 2015;71(5):553–560. doi:10.1016/j.jinf.2015.07.010
  • Lai Y-C, Lu M-C, Hsueh P-R. Hypervirulence and carbapenem resistance: two distinct evolutionary directions that led high-risk Klebsiella pneumoniae clones to epidemic success. Expert Rev Mol Diagn. 2019;19(9):825–837. doi:10.1080/14737159.2019.1649145
  • Zhou K, Xue C-X, Xu T, et al. A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. Nat Commun. 2023;14(1):2464. doi:10.1038/s41467-023-38061-z
  • Pu D, Zhao J, Lu B, et al. Within-host resistance evolution of a fatal ST11 hypervirulent carbapenem-resistant Klebsiella pneumoniae. Int J Antimicrob Agents. 2023;61(4):106747. doi:10.1016/j.ijantimicag.2023.106747
  • Xu Y, Zhang J, Wang M, et al. Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae. Genome Med. 2021;13(1):119. doi:10.1186/s13073-021-00936-5
  • Yang X, Wai-Chi Chan E, Zhang R, et al. A conjugative plasmid that augments virulence in Klebsiella pneumoniae. Nat Microbiol. 2019;4(12):2039–2043. doi:10.1038/s41564-019-0566-7
  • Li R, Cheng J, Dong H, et al. Emergence of a novel conjugative hybrid virulence multidrug-resistant plasmid in extensively drug-resistant Klebsiella pneumoniae ST15. Int J Antimicrob Agents. 2020;55(6):105952. doi:10.1016/j.ijantimicag.2020.105952
  • Xia P, et al. Coexistence of multidrug resistance and virulence in a single conjugative plasmid from a Hypervirulent Klebsiella pneumoniae isolate of sequence Type 25. mSphere. 2022;7(6):e0047722.
  • Xie M, Yang X, Xu Q, et al. Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae. Commun Biol. 2021;4(1):650. doi:10.1038/s42003-021-02148-4
  • Zhou C, Zhang H, Xu M, et al. Within-host resistance and virulence evolution of a hypervirulent Carbapenem-resistant Klebsiella pneumoniae ST11 under antibiotic pressure. Infect Drug Resist. 2023;16:7255–7270. doi:10.2147/IDR.S436128
  • Yahav D, Giske CG, Grāmatniece A, et al. New beta-Lactam-beta-Lactamase inhibitor combinations. Clin Microbiol Rev. 2020;34(1):e00115–20. doi:10.1128/CMR.00115-20
  • Zhang P, Shi Q, Hu H, et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin Microbiol Infect. 2020;26(1):124.e1–124.e4. doi:10.1016/j.cmi.2019.08.020
  • Xu M, Zhao J, Xu L, et al. Emergence of transferable ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae due to a novel CMY AmpC beta-lactamase in China. Clin Microbiol Infect. 2022;28(1):136.e1–136.e6. doi:10.1016/j.cmi.2021.05.026
  • Wang Y, Xu C, Zhang R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis. 2020;20(10):1161–1171. doi:10.1016/S1473-3099(20)30149-3
  • Wang Y, Luo Q, Chen T, et al. Clinical, biological and genome-wide comparison of carbapenem-resistant Klebsiella pneumoniae with susceptibility transformation to polymyxin B during therapy. Clin Microbiol Infect. 2023;29(10):1336.e1–1336.e8. doi:10.1016/j.cmi.2023.06.029
  • Luo Q, Yu W, Zhou K, et al. Molecular epidemiology and Colistin resistant mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front Microbiol. 2017;8:2262. doi:10.3389/fmicb.2017.02262
  • Berglund B. Acquired resistance to colistin via chromosomal and plasmid-mediated mechanisms in Klebsiella pneumoniae. Infect Microbes Diseases. 2019;1(1):10–19. doi:10.1097/IM9.0000000000000002
  • Kim SJ, Shin JH, Kim H, et al. Roles of crrAB two-component regulatory system in Klebsiella pneumoniae: growth yield, survival in initial colistin treatment stage, and virulence. Int J Antimicrob Agents. 2024;63(1):107011. doi:10.1016/j.ijantimicag.2023.107011
  • Wright MS, Suzuki Y, Jones MB, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother. 2015;59(1):536–543. doi:10.1128/AAC.04037-14
  • Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol. 2019;17(8):479–496. doi:10.1038/s41579-019-0218-1
  • Sun Y, Cai Y, Liu X, et al. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents. 2013;41(2):110–116. doi:10.1016/j.ijantimicag.2012.09.005
  • He F, Shi Q, Fu Y, et al. Tigecycline resistance caused by rpsJ evolution in a 59-year-old male patient infected with KPC-producing Klebsiella pneumoniae during tigecycline treatment. Infect Genet Evol. 2018;66:188–191. doi:10.1016/j.meegid.2018.09.025
  • Bialek-Davenet S, Lavigne J-P, Guyot K, et al. Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother. 2015;70(1):81–88. doi:10.1093/jac/dku340
  • Chiu SK, et al. Roles of ramR and tet(A) mutations in conferring tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2017;61(8):e00391–17.
  • Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387. doi:10.1101/cshperspect.a025387
  • Zhang R, Dong N, Shen Z, et al. Epidemiological and phylogenetic analysis reveals Flavobacteriaceae as potential ancestral source of tigecycline resistance gene tet(X). Nat Commun. 2020;11(1):4648. doi:10.1038/s41467-020-18475-9
  • Becker B, Cooper MA. Aminoglycoside antibiotics in the 21st century. ACS Chem Biol. 2013;8(1):105–115. doi:10.1021/cb3005116
  • Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm. 2016;7(1):11–27. doi:10.1039/C5MD00344J
  • Wachino J, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic gram-negative bacteria: an update. Drug Resist Updat. 2012;15(3):133–148. doi:10.1016/j.drup.2012.05.001
  • Sacco F, Raponi G, Oliva A, et al. An outbreak sustained by ST15 Klebsiella pneumoniae carrying 16S rRNA methyltransferases and bla(NDM): evaluation of the global dissemination of these resistance determinants. Int J Antimicrob Agents. 2022;60(2):106615. doi:10.1016/j.ijantimicag.2022.106615
  • Zhang X, Li Q, Lin H, et al. High-level aminoglycoside resistance in human clinical Klebsiella pneumoniae complex isolates and characteristics of armA-carrying IncHI5 plasmids. Front Microbiol. 2021;12:636396. doi:10.3389/fmicb.2021.636396
  • Huang L, Cao M, Hu Y, et al. Prevalence and mechanisms of fosfomycin resistance among KPC-producing Klebsiella pneumoniae clinical isolates in China. Int J Antimicrob Agents. 2021;57(1):106226. doi:10.1016/j.ijantimicag.2020.106226
  • Vardakas KZ, Legakis NJ, Triarides N, et al. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents. 2016;47(4):269–285. doi:10.1016/j.ijantimicag.2016.02.001
  • Xiang DR, Li J-J, Sheng Z-K, et al. Complete sequence of a Novel IncR-F33:A-:B- plasmid, pKP1034, Harboring fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12, and rmtB from an Epidemic Klebsiella pneumoniae Sequence Type 11 Strain in China. Antimicrob Agents Chemother. 2016;60(3):1343–1348. doi:10.1128/AAC.01488-15
  • Bi W, Li B, Song J, et al. Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum beta-lactamase-producing Escherichia coli strains from urinary tract infections in Wenzhou, China. Int J Antimicrob Agents. 2017;50(1):29–34. doi:10.1016/j.ijantimicag.2017.02.010
  • Acman M, Wang R, van Dorp L, et al. Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene blaNDM. Nat Commun. 2022;13(1):1131. doi:10.1038/s41467-022-28819-2
  • Qu H, Wang X, Ni Y, et al. NDM-1-producing Enterobacteriaceae in a teaching hospital in Shanghai, China: IncX3-type plasmids may contribute to the dissemination of blaNDM-1. Int J Infect Dis. 2015;34:8–13. doi:10.1016/j.ijid.2015.02.020
  • Zhang F, et al. Further spread of bla NDM-5 in Enterobacteriaceae via IncX3 plasmids in Shanghai, China. Front Microbiol. 2016;7:424.
  • Kikuchi Y, Matsui H, Asami Y, et al. Landscape of bla NDM genes in Enterobacteriaceae. J Antibiot. 2022;75(10):559–566. doi:10.1038/s41429-022-00553-3
  • Partridge SR, Iredell JR. Genetic contexts of bla NDM-1. Antimicrob Agents Chemother. 2012;56(11):6065–6067. doi:10.1128/AAC.00117-12
  • Dong H, Li Y, Cheng J, et al. Genomic epidemiology Insights on NDM-producing pathogens revealed the pivotal role of plasmids onblaNDM transmission. Microbiol Spectr. 2022;10(2):e02156–21. doi:10.1128/spectrum.02156-21
  • Poirel L, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. 2018;6(4):6.4.14. doi:10.1128/microbiolspec.ARBA-0026-2017
  • Bi W, Li B, Song J, et al. Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum β-lactamase-producing Escherichia coli strains from urinary tract infections in Wenzhou, China. Int J Antimicrob Agents. 2017;50(1):29–34. doi:10.1016/j.ijantimicag.2017.02.010
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–582. doi:10.1128/CMR.00058-07
  • Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis. 2014;71(3):292–301. doi:10.1111/2049-632X.12125
  • Piperaki ET, Tzouvelekis LS, Miriagou V, et al. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin Microbiol Infect. 2019;25(8):951–957. doi:10.1016/j.cmi.2019.03.014
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–582. doi:10.1128/CMR.00058-07
  • Mohd Sazlly Lim S, Zainal Abidin A, Liew SM, et al. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J Infect. 2019;79(6):593–600. doi:10.1016/j.jinf.2019.09.012
  • Gu Y, Zhang W, Lei J, et al. Molecular epidemiology and carbapenem resistance characteristics of Acinetobacter baumannii causing bloodstream infection from 2009 to 2018 in northwest China. Front Microbiol. 2022;13:983963. doi:10.3389/fmicb.2022.983963
  • Ikuta KS, Swetschinski LR, Robles Aguilar G, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221–2248. doi:10.1016/S0140-6736(22)02185-7
  • Chen C-H, Wu P-H, Lu M-C, et al. Geographic patterns of carbapenem-resistant, multi-drug-resistant and difficult-to-treat Acinetobacter baumannii in the Asia-Pacific region: results from the antimicrobial testing leadership and surveillance (ATLAS) program, 2020. Int J Antimicrob Agents. 2023;61(2):106707. doi:10.1016/j.ijantimicag.2022.106707
  • Liu C, Chen K, Wu Y, et al. Epidemiological and genetic characteristics of clinical carbapenem-resistant Acinetobacter baumannii strains collected countrywide from hospital intensive care units (ICUs) in China. Emerg Microbes Infect. 2022;11(1):1730–1741. doi:10.1080/22221751.2022.2093134
  • Hamidian M, Nigro SJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb Genom. 2019;5(10):e000306.
  • Chen T, Fu Y, Hua X, et al. Acinetobacter baumannii strains isolated from cerebrospinal fluid (CSF) and bloodstream analysed by cgMLST: the dominance of clonal complex CC92 in CSF infections. Int J Antimicrob Agents. 2021;58(4):106404. doi:10.1016/j.ijantimicag.2021.106404
  • Jiang Y, Ding Y, Wei Y, et al. Carbapenem-resistant Acinetobacter baumannii: a challenge in the intensive care unit. Front Microbiol. 2022;13:1045206. doi:10.3389/fmicb.2022.1045206
  • Kang HM, Yun KW, Choi EH. Molecular epidemiology of Acinetobacter baumannii complex causing invasive infections in Korean children during 2001–2020. Ann Clin Microbiol Antimicrob. 2023;22(1):32. doi:10.1186/s12941-023-00581-3
  • Kong X, Chen T, Guo L, et al. Phenotypic and genomic comparison of dominant and nondominant sequence-type of Acinetobacter baumannii isolated in China. Front Cell Infect Microbiol. 2023;13:1118285. doi:10.3389/fcimb.2023.1118285
  • Kim YJ, Kim SI, Kim YR, et al. Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanisms and risk factors for infection. Epidemiol Infect. 2012;140(1):137–145. doi:10.1017/S0950268811000744
  • Liu C, Chen K, Wu Y, et al. Epidemiological and genetic characteristics of clinical carbapenem-resistant Acinetobacter baumannii strains collected countrywide from hospital intensive care units (ICUs) in China. Emerg Microbes Infect. 2022;11(1):1730–1741. doi:10.1080/22221751.2022.2093134
  • Muller C, Reuter S, Wille J, et al. A global view on carbapenem-resistant Acinetobacter baumannii. mBio. 2023;14(6):e0226023.
  • Isler B, Doi Y, Bonomo RA, et al. New treatment options against Carbapenem-resistant Acinetobacter baumannii Infections. Antimicrob Agents Chemother. 2019;63(1):e01110–18. doi:10.1128/AAC.01110-18
  • Qureshi ZA, Hittle LE, O'Hara JA, et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis. 2015;60(9):1295–1303. doi:10.1093/cid/civ048
  • Sun B, et al. New mutations involved in Colistin resistance in Acinetobacter baumannii. mSphere. 2020;5(2):e00895–19.
  • Gerson S, Nowak J, Zander E, et al. Diversity of mutations in regulatory genes of resistance-nodulation-cell division efflux pumps in association with tigecycline resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2018;73(6):1501–1508. doi:10.1093/jac/dky083
  • Oliver A, Mulet X, López-Causapé C, et al. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21-22:41–59. doi:10.1016/j.drup.2015.08.002
  • Hu Y-Y, Cao J-M, Yang Q, et al. Risk factors for Carbapenem-resistant Pseudomonas aeruginosa, Zhejiang Province, China. Emerg Infect Dis. 2019;25(10):1861–1867. doi:10.3201/eid2510.181699
  • Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev. 2018;31(4):e00019–18. doi:10.1128/CMR.00019-18
  • Treepong P, Kos VN, Guyeux C, et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect. 2018;24(3):258–266. doi:10.1016/j.cmi.2017.06.018
  • Zhang B, Xu X, Song X, et al. Emerging and re-emerging KPC-producing hyper virulent Pseudomonas aeruginosaST697 and ST463 between 2010 and 2021. Emerg Microbes Infect. 2022;11(1):2735–2745. doi:10.1080/22221751.2022.2140609
  • Patil S, Chen X, Dong S, et al. Resistance genomics and molecular epidemiology of high-risk clones of ESBL-producing Pseudomonas aeruginosa in young children. Front Cell Infect Microbiol. 2023;13:1168096. doi:10.3389/fcimb.2023.1168096
  • Xiao C, Zhu Y, Yang Z, et al. Prevalence and molecular characteristics of polymyxin-resistant Pseudomonas aeruginosa in a Chinese tertiary teaching hospital. Antibiotics. 2022;11(6):799. doi:10.3390/antibiotics11060799
  • Zhao Y, Xie L, Wang C, et al. Comparative whole-genome analysis of China and global epidemic Pseudomonas aeruginosa high-risk clones. J Glob Antimicrob Resist. 2023;35:149–158. doi:10.1016/j.jgar.2023.08.020
  • Wu W, Wei L, Feng Y, et al. Precise species identification by whole-genome sequencing of Enterobacter bloodstream infection, China. Emerg Infect Dis. 2021;27(1):161–169. doi:10.3201/eid2701.190154
  • Wu W, Feng Y, Zong Z. Precise species identification for Enterobacter: a genome sequence-based study with reporting of two novel species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov. mSystems. 2020;5(4):e00527–20.
  • Giamarellou H. Epidemiology of infections caused by polymyxin-resistant pathogens. Int J Antimicrob Agents. 2016;48(6):614–621. doi:10.1016/j.ijantimicag.2016.09.025
  • Zong Z, Feng Y, McNally A. Carbapenem and Colistin resistance in Enterobacter: determinants and clones. Trends Microbiol. 2021;29(6):473–476. doi:10.1016/j.tim.2020.12.009
  • Guérin F, Isnard C, Sinel C, et al. Cluster-dependent colistin hetero-resistance in Enterobacter cloacae complex. J Antimicrob Chemother. 2016;71(11):3058–3061. doi:10.1093/jac/dkw260
  • Kim TH, et al. Novel cassette assay to quantify the outer membrane permeability of five β-lactams simultaneously in carbapenem-resistant Klebsiella pneumoniae and Enterobacter cloacae. MBio. 2020;11(1):e03189–19. doi:10.1128/mbio.03189-19
  • Zhu Z, Xie X, Yu H, et al. Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter strains in China: a multicenter genomic study. Emerg Microbes Infect. 2023;12(1):2148562. doi:10.1080/22221751.2022.2148562
  • Izdebski R, Biedrzycka M, Urbanowicz P, et al. Genome-based epidemiologic analysis of VIM/IMP Carbapenemase-producing Enterobacter spp., Poland. Emerg Infect Dis. 2023;29(8):1618. doi:10.3201/eid2908.230199
  • Xu T, Xue C-X, Huang J, et al. Emergence of an epidemic hypervirulent clone of Enterobacter hormaechei coproducing mcr-9 and carbapenemases. Lancet Microbe. 2022;3(7):e474–e475. doi:10.1016/S2666-5247(22)00122-7
  • Zhou K, Zhou Y, Xue C-x, et al. Bloodstream infections caused by Enterobacter hormaechei ST133 in China, 2010–22. Lancet Microbe. 2023;4(1):e13. doi:10.1016/S2666-5247(22)00226-9
  • Rizvi SG, Ahammad SZ. COVID-19 and antimicrobial resistance: a cross-study. Sci Total Environ. 2022;807(Pt 2):150873. doi:10.1016/j.scitotenv.2021.150873
  • Gao Y, et al. Origin, Phylogeny, and Transmission of the Epidemic Clone ST208 of Carbapenem-Resistant Acinetobacter baumannii on a Global Scale. Microbiol Spectr. 2022;10(3):e02604–21.
  • Wang X, Du Z, Huang W, et al. Outbreak of multidrug-resistant Acinetobacter baumannii ST208 Producing OXA-23-Like Carbapenemase in a Children's Hospital in Shanghai, China. Microb Drug Resist. 2021;27(6):816–822. doi:10.1089/mdr.2019.0232
  • Maljkovic Berry I, et al. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: approaches, applications, and considerations for development of laboratory capacity. J Infect Dis. 2020;221(Supplement_3):S292–S307.
  • Otto M. Next-generation sequencing to monitor the spread of antimicrobial resistance. Genome Med. 2017;9(1):1–3. doi:10.1186/s13073-017-0461-x
  • Li H, Du Z, Huang W, et al. Trends and patterns of outpatient and inpatient antibiotic use in China’s hospitals: data from the Center for Antibacterial Surveillance, 2012–16. J Antimicrob Chemother. 2019;74(6):1731–1740. doi:10.1093/jac/dkz062
  • Qiao M, Ying G-G, Singer AC, et al. Review of antibiotic resistance in China and its environment. Environ Int. 2018;110:160–172. doi:10.1016/j.envint.2017.10.016
  • Algammal AM, Hetta HF, Elkelish A, et al. Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020;13:3255–3265. doi:10.2147/IDR.S272733
  • Grøntvedt CA, Elstrøm P, Stegger M, et al. Methicillin-resistant Staphylococcus aureus CC398 in humans and pigs in Norway: a “one health” perspective on introduction and transmission. Clin Infect Dis. 2016;63(11):1431–1438. doi:10.1093/cid/ciw552