829
Views
0
CrossRef citations to date
0
Altmetric
Drug Resistance and Novel Antimicrobial Agents

Characterization of the diversity of type IV secretion system-encoding plasmids in Acinetobacter

, , , , , & ORCID Icon show all
Article: 2320929 | Received 14 Sep 2023, Accepted 14 Feb 2024, Published online: 26 Mar 2024

References

  • Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007 Dec;5(12):939–51. doi:10.1038/nrmicro1789
  • Dexter C, Murray GL, Paulsen IT, et al. Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev Anti Infect Ther. 2015 May;13(5):567–73. doi:10.1586/14787210.2015.1025055
  • Howard A, O'Donoghue M, Feeney A, et al. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 2012 May 1;3(3):243–50. doi:10.4161/viru.19700
  • Ayobami O, Willrich N, Harder T, et al. The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg Microbes Infect. 2019;8(1):1747–1759. doi:10.1080/22221751.2019.1698273
  • Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: from bench to bedside. World J Clin Cases. 2014 Dec 16;2(12):787–814. doi:10.12998/wjcc.v2.i12.787
  • Ong CW, Lye DC, Khoo KL, et al. Severe community-acquired Acinetobacter baumannii pneumonia: an emerging highly lethal infectious disease in the Asia-pacific. Respirology. 2009 Nov;14(8):1200–5. doi:10.1111/j.1440-1843.2009.01630.x
  • Zhou H, Larkin PMK, Huang J, et al. Discovery of a novel hypervirulent Acinetobacter baumannii strain in a case of community-acquired pneumonia. Infect Drug Resist. 2020;13:1147–1153. doi:10.2147/IDR.S244044
  • Liu PY, Lee YL, Lu MC, et al. National surveillance of antimicrobial susceptibility of bacteremic gram-negative bacteria with emphasis on community-acquired resistant isolates: report from the 2019 Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Antimicrob Agents Chemother. 2020 Sep 21;64(10):e01089–20. doi:10.1128/AAC.01089-20
  • Luyt CE, Hekimian G, Koulenti D, et al. Microbial cause of ICU-acquired pneumonia: hospital-acquired pneumonia versus ventilator-associated pneumonia. Curr Opin Crit Care. 2018 Oct;24(5):332–338. doi:10.1097/MCC.0000000000000526
  • Inchai J, Pothirat C, Liwsrisakun C, et al. Ventilator-associated pneumonia: epidemiology and prognostic indicators of 30-day mortality. Jpn J Infect Dis. 2015;68(3):181–6. doi:10.7883/yoken.JJID.2014.282
  • Villalon P, Ortega M, Saez-Nieto JA, et al. Dynamics of a sporadic nosocomial Acinetobacter calcoaceticus - Acinetobacter baumannii complex population. Front Microbiol. 2019;10:593. doi:10.3389/fmicb.2019.00593
  • Nemec A, Krizova L, Maixnerova M, et al. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int J Syst Evol Microbiol. 2015 Mar;65(Pt 3):934–942. doi:10.1099/ijs.0.000043
  • Dahal U, Paul K, Gupta S. The multifaceted genus Acinetobacter: from infection to bioremediation. J Appl Microbiol. 2023 Aug 1;134(8). doi:10.1093/jambio/lxad145
  • Al Atrouni A, Joly-Guillou ML, Hamze M, et al. Reservoirs of Non-baumannii Acinetobacter species. Front Microbiol. 2016;7:49.
  • Adewoyin MA, Okoh AI. The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species. Rev Environ Health. 2018 Sep 25;33(3):265–272. doi:10.1515/reveh-2017-0034
  • Castillo-Ramirez S. The importance of Acinetobacter baumannii from non-human sources. Lancet Microbe. 2023 Oct;4(10):e761–e762. doi:10.1016/S2666-5247(23)00246-X
  • Rafei R, Hamze M, Pailhories H, et al. Extrahuman epidemiology of Acinetobacter baumannii in Lebanon. Appl Environ Microbiol. 2015 Apr;81(7):2359–67. doi:10.1128/AEM.03824-14
  • Schmitz A, Hanke D, Luschow D, et al. Acinetobacter baumannii from samples of commercially reared turkeys: genomic relationships, antimicrobial and biocide susceptibility. Microorganisms. 2023 Mar 16;11(3). doi:10.3390/microorganisms11030759
  • Mateo-Estrada V, Vali L, Hamouda A, et al. Acinetobacter baumannii sampled from cattle and pigs represent novel clones. Microbiol Spectr. 2022 Aug 31;10(4):e0128922. doi:10.1128/spectrum.01289-22
  • Mateo-Estrada V, Tyrrell C, Evans BA, et al. Acinetobacter baumannii from grass: novel but non-resistant clones. Microb Genom. 2023 Jul;9(7):mgen001054. doi:10.1099/mgen.0.001054
  • Virolle C, Goldlust K, Djermoun S, et al. Plasmid transfer by conjugation in gram-negative bacteria: from the cellular to the community level. Genes (Basel). 2020 Oct 22;11(11). doi:10.3390/genes11111239
  • Wallden K, Rivera-Calzada A, Waksman G. Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 2010 Sep 1;12(9):1203–12. doi:10.1111/j.1462-5822.2010.01499.x
  • Grohmann E, Christie PJ, Waksman G, et al. Type IV secretion in gram-negative and gram-positive bacteria. Mol Microbiol. 2018 Feb;107(4):455–471. doi:10.1111/mmi.13896
  • Juhas M, Crook DW, Hood DW. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol. 2008 Dec;10(12):2377–86. doi:10.1111/j.1462-5822.2008.01187.x
  • Souza RC, del Rosario Quispe Saji G, Costa MO, et al. AtlasT4SS: a curated database for type IV secretion systems. BMC Microbiol. 2012 Aug 9;12:172. doi:10.1186/1471-2180-12-172
  • Lawley TD, Klimke WA, Gubbins MJ, et al. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett. 2003 Jul 15;224(1):1–15. doi:10.1016/S0378-1097(03)00430-0
  • Hu B, Khara P, Christie PJ. Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14222–14227. doi:10.1073/pnas.1904428116
  • Li P, Zhang S, Wang J, et al. Uncovering the secretion systems of Acinetobacter baumannii: structures and functions in pathogenicity and antibiotic resistance. Antibiotics (Basel). 2023 Jan 17;12(2):195. doi:10.3390/antibiotics12020195
  • Liu CC, Kuo HY, Tang CY, et al. Prevalence and mapping of a plasmid encoding a type IV secretion system in Acinetobacter baumannii. Genomics. 2014 Sep;104(3):215–23. doi:10.1016/j.ygeno.2014.07.011
  • Iacono M, Villa L, Fortini D, et al. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother. 2008 Jul;52(7):2616–25. doi:10.1128/AAC.01643-07
  • Salgado-Camargo AD, Castro-Jaimes S, Gutierrez-Rios RM, et al. Structure and evolution of Acinetobacter baumannii plasmids. Front Microbiol. 2020;11:1283. doi:10.3389/fmicb.2020.01283
  • Gallagher LA, Ramage E, Weiss EJ, et al. Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii. J Bacteriol. 2015 Jun 15;197(12):2027–35. doi:10.1128/JB.00131-15
  • Kalivoda EJ, Horzempa J, Stella NA, et al. New vector tools with a hygromycin resistance marker for use with opportunistic pathogens. Mol Biotechnol. 2011 May;48(1):7–14. doi:10.1007/s12033-010-9342-x
  • Di Venanzio G, Moon KH, Weber BS, et al. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1378–1383. doi:10.1073/pnas.1812557116
  • Weber BS, Ly PM, Irwin JN, et al. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9442–7. doi:10.1073/pnas.1502966112
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–10. doi:10.1016/S0022-2836(05)80360-2
  • Diancourt L, Passet V, Nemec A, et al. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One. 2010 Apr 7;5(4):e10034. doi:10.1371/journal.pone.0010034
  • Paradis E. Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019 Feb 1;35(3):526–528. doi:10.1093/bioinformatics/bty633
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul 15;30(14):2068–9. doi:10.1093/bioinformatics/btu153
  • Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015 Nov 15;31(22):3691–3. doi:10.1093/bioinformatics/btv421
  • Price MN, Dehal PS, Arkin AP. Fasttree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010 Mar 10;5(3):e9490. doi:10.1371/journal.pone.0009490
  • Zhou Z, Charlesworth J, Achtman M. Accurate reconstruction of bacterial pan- and core genomes with PEPPAN. Genome Res. 2020 Nov;30(11):1667–1679. doi:10.1101/gr.260828.120
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021 Jun 25;38(7):3022–3027. doi:10.1093/molbev/msab120
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021 Jul 2;49(W1):W293–W296. doi:10.1093/nar/gkab301
  • Burgetz IJ, Shariff S, Pang A, et al. Positional homology in bacterial genomes. Evol Bioinform Online. 2007 Jan 14;2:77–90.
  • Agren J, Sundstrom A, Hafstrom T, et al. Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One. 2012;7(6):e39107. doi:10.1371/journal.pone.0039107
  • Darling AC, Mau B, Blattner FR, et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004 Jul;14(7):1394–403. doi:10.1101/gr.2289704
  • Chen CC, Lin YC, Sheng WH, et al. Genome sequence of a dominant, multidrug-resistant Acinetobacter baumannii strain, TCDC-AB0715. J Bacteriol. 2011 May;193(9):2361–2. doi:10.1128/JB.00244-11
  • McArthur AG, Waglechner N, Nizam F, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013 Jul;57(7):3348–57. doi:10.1128/AAC.00419-13
  • Bortolaia V, Kaas RS, Ruppe E, et al. Resfinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020 Dec 1;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012 Nov;67(11):2640–4. doi:10.1093/jac/dks261
  • Chen T, Fu Y, Hua X, et al. Acinetobacter baumannii strains isolated from cerebrospinal fluid (CSF) and bloodstream analysed by cgMLST: the dominance of clonal complex CC92 in CSF infections. Int J Antimicrob Agents. 2021 Oct;58(4):106404. doi:10.1016/j.ijantimicag.2021.106404
  • Johansson MHK, Bortolaia V, Tansirichaiya S, et al. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother. 2021 Jan 1;76(1):101–109. doi:10.1093/jac/dkaa390
  • Siguier P, Perochon J, Lestrade L, et al. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D32–6. doi:10.1093/nar/gkj014
  • Salto IP, Torres Tejerizo G, Wibberg D, et al. Comparative genomic analysis of Acinetobacter spp. plasmids originating from clinical settings and environmental habitats. Sci Rep. 2018 May 17;8(1):7783. doi:10.1038/s41598-018-26180-3
  • Huang TW, Lauderdale TL, Liao TL, et al. Effective transfer of a 47 kb NDM-1-positive plasmid among Acinetobacter species. J Antimicrob Chemother. 2015 Oct;70(10):2734–8. doi:10.1093/jac/dkv191
  • D'Costa VM, McGrann KM, Hughes DW, et al. Sampling the antibiotic resistome. Science. 2006 Jan 20;311(5759):374–7. doi:10.1126/science.1120800
  • M100 performance standards for antimicrobial susceptibility testing. 30th ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2020.
  • Chan JZ, Halachev MR, Loman NJ, et al. Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol. 2012 Dec 23;12:302. doi:10.1186/1471-2180-12-302
  • Jacobs AC, Thompson MG, Black CC, et al. AB5075, a highly virulent isolate of Acinetobacter baumannii, as a model strain for the evaluation of pathogenesis and antimicrobial treatments. mBio. 2014 May 27;5(3):e01076–14. doi:10.1128/mBio.01076-14
  • Furlan JPR, de Almeida OGG, De Martinis ECP, et al. Characterization of an environmental multidrug-resistant Acinetobacter seifertii and comparative genomic analysis reveals co-occurrence of antimicrobial resistance and metal tolerance determinants. Front Microbiol. 2019;10:2151. doi:10.3389/fmicb.2019.02151
  • Castro-Jaimes S, Bello-Lopez E, Velazquez-Acosta C, et al. Chromosome architecture and gene content of the emergent pathogen Acinetobacter haemolyticus. Front Microbiol. 2020;11:926. doi:10.3389/fmicb.2020.00926
  • Yang Y, Wang J, Fu Y, et al. Acinetobacter seifertii isolated from China: genomic sequence and molecular epidemiology analyses. Medicine (Baltimore). 2016 Mar;95(9):e2937. doi:10.1097/MD.0000000000002937
  • Gao D, Tian C, Huang D, et al. Genome sequence of a tigecycline-resistant Acinetobacter seifertii recovered in human bloodstream infection in China. J Glob Antimicrob Resist. 2023 Jun 24;34:39–42. doi:10.1016/j.jgar.2023.06.007
  • Li LH, Yang YS, Sun JR, et al. Clinical and molecular characterization of Acinetobacter seifertii in Taiwan. J Antimicrob Chemother. 2021 Jan 19;76(2):312–321. doi:10.1093/jac/dkaa432
  • Bai L, Zhang S, Deng Y, et al. Comparative genomics analysis of Acinetobacter haemolyticus isolates from sputum samples of respiratory patients. Genomics. 2020 Jul;112(4):2784–2793. doi:10.1016/j.ygeno.2020.03.016
  • Martinez E C, Asensio M T, Blanco VM R, et al. Infective endocarditis of an interventricular patch caused by Acinetobacter haemolyticus. Infection. 1995 Jul-Aug;23(4):243–5. doi:10.1007/BF01781207
  • Elhosseiny NM, Amin MA, Yassin AS, et al. Acinetobacter baumannii universal stress protein A plays a pivotal role in stress response and is essential for pneumonia and sepsis pathogenesis. Int J Med Microbiol. 2015 Jan;305(1):114–23. doi:10.1016/j.ijmm.2014.11.008
  • Williams CL, Neu HM, Alamneh YA, et al. Characterization of Acinetobacter baumannii copper resistance reveals a role in virulence. Front Microbiol. 2020;11:16. doi:10.3389/fmicb.2020.00016
  • Brovedan MA, Cameranesi MM, Limansky AS, et al. What do we know about plasmids carried by members of the Acinetobacter genus? World J Microbiol Biotechnol. 2020 Jul 13;36(8):109. doi:10.1007/s11274-020-02890-7
  • Elham B, Fawzia A. Colistin resistance in Acinetobacter baumannii isolated from critically ill patients: clinical characteristics, antimicrobial susceptibility and outcome. Afr Health Sci. 2019 Sep;19(3):2400–2406. doi:10.4314/ahs.v19i3.13
  • Boudaher E, Shaffer CL. Inhibiting bacterial secretion systems in the fight against antibiotic resistance. Medchemcomm. 2019 May 1;10(5):682–692. doi:10.1039/C9MD00076C