1,375
Views
0
CrossRef citations to date
0
Altmetric
Drug Resistance and Novel Antimicrobial Agents

AMXT-1501 targets membrane phospholipids against Gram-positive and -negative multidrug-resistant bacteria

, , , , , , , , , & show all
Article: 2321981 | Received 02 Nov 2023, Accepted 16 Feb 2024, Published online: 29 Feb 2024

References

  • Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015 Jan;13(1):42–51. doi:10.1038/nrmicro3380
  • Bassetti M, Labate L, Melchio M, et al. Current pharmacotherapy for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Expert Opin Pharmacother. 2022 Feb;23(3):361–375. doi:10.1080/14656566.2021.2010706
  • Liang J, Hu Y, Fu M, et al. Resistance and molecular characteristics of methicillin-resistant Staphylococcus aureus and heterogeneous vancomycin-intermediate Staphylococcus aureus. Infect Drug Resist. 2023 Jan 23;16:379–388. doi:10.2147/IDR.S392908
  • Youenou B, Martins Simoes P, Tristan A, et al. Linezolid resistance: detection of the cfr(B) gene in French clinical MRSA strains. J Antimicrob Chemother. 2023 Feb 1;78(2):445–449. doi:10.1093/jac/dkac411
  • Ernst CM, Peschel A. MprF-mediated daptomycin resistance. Int J Med Microbiol. 2019 Jul;309(5):359–363. doi:10.1016/j.ijmm.2019.05.010
  • Kaushik V, Sharma S, Tiwari M, et al. Antipersister strategies against stress induced bacterial persistence. Microb Pathog. 2022 Mar;164:105423, doi:10.1016/j.micpath.2022.105423
  • Koulenti D, Xu E, Song A, et al. Emerging treatment options for infections by multidrug-resistant Gram-positive microorganisms. Microorganisms. 2020 Jan 30;8(2):191, doi:10.3390/microorganisms8020191
  • Nasser A, Dallal MMS, Jahanbakhshi S, et al. Staphylococcus aureus: biofilm formation and strategies against it. Curr Pharm Biotechnol. 2022;23(5):664–678. doi:10.2174/1389201022666210708171123
  • Álvarez S, Leiva-Sabadini C, Schuh CMAP, et al. Bacterial adhesion to collagens: implications for biofilm formation and disease progression in the oral cavity. Crit Rev Microbiol. 2022 Feb;48(1):83–95. doi:10.1080/1040841X.2021.1944054
  • Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models. iScience. 2021 Apr 17;24(5):102443.
  • Ayobami O, Brinkwirth S, Eckmanns T, et al. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis. Emerg Microbes Infect. 2022 Dec;11(1):443–451. doi:10.1080/22221751.2022.2030196
  • Janda JM, Abbott SL. The changing face of the family enterobacteriaceae (order: “Enterobacterales”): new members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin Microbiol Rev. 2021 Feb 24;34(2):e00174–20. doi:10.1128/CMR.00174-20
  • Cho S, Jackson CR, Frye JG. Freshwater environment as a reservoir of extended-spectrum β-lactamase-producing Enterobacteriaceae. J Appl Microbiol. 2023 Mar 1;134(3):lxad034.
  • Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant Gram-negative bacteria. Front Cell Infect Microbiol. 2022 Mar 15;12:823684, doi:10.3389/fcimb.2022.823684
  • Yang P, Li Y, Wang X, et al. Efficacy and safety of ceftazidime-avibactam versus polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infection: a systematic review and meta-analysis. BMJ Open. 2023 May 3;13(5):e070491.
  • Li D, Huang X, Rao H, et al. Klebsiella pneumoniae bacteremia mortality: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2023 Apr 20;13:1157010, doi:10.3389/fcimb.2023.1157010
  • Band VI, Hufnagel DA, Jaggavarapu S, et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection. Nat Microbiol. 2019 Oct;4(10):1627–1635. doi:10.1038/s41564-019-0480-z
  • Giono-Cerezo S, Santos-Preciado JI, Morfín-Otero MDR, et al. Antimicrobial resistance. Its importance and efforts to control it. Gac Med Mex. 2020;156(2):171–178.
  • Samal K, Zhao P, Kendzicky A, et al. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int J Cancer. 2013 Sep 15;133(6):1323–1333. doi:10.1002/ijc.28139
  • Song M, Liu Y, Huang X, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol. 2020 Aug;5(8):1040–1050. doi:10.1038/s41564-020-0723-z
  • Liu Y, Jia Y, Yang K, et al. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics. 2020 Aug 29;10(23):10697–10711. doi:10.7150/thno.45951
  • Liu X, Xiong Y, Shi Y, et al. In vitro activities of licochalcone A against planktonic cells and biofilm of Enterococcus faecalis. Front Microbiol. 2022 Oct 21;13:970901, doi:10.3389/fmicb.2022.970901
  • Xiong Y, Liu S, Zheng J, et al. Cinacalcet exhibits rapid bactericidal and efficient anti-biofilm activities against multidrug-resistant Gram-positive pathogens. iScience. 2023 Mar 11;26(4):106378.
  • Lee H, Lim SI, Shin SH, et al. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity. ACS Omega. 2019 Sep 9;4(13):15694–15701. doi:10.1021/acsomega.9b02278
  • Wartchow CA, Podlaski F, Li S, et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J Comput Aided Mol Des. 2011 Jul;25(7):669–676. doi:10.1007/s10822-011-9439-8
  • Zheng J, Shang Y, Wu Y, et al. Diclazuril inhibits biofilm formation and hemolysis of Staphylococcus aureus. ACS Infect Dis. 2021 Jun 11;7(6):1690–1701. doi:10.1021/acsinfecdis.1c00030
  • Khan A, Gamble LD, Upton DH, et al. Dual targeting of polyamine synthesis and uptake in diffuse intrinsic pontine gliomas. Nat Commun. 2021 Feb 12;12(1):971, doi:10.1038/s41467-021-20896-z
  • Gamble LD, Purgato S, Murray J, et al. Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Sci Transl Med. 2019 Jan 30;11(477):eaau1099, doi:10.1126/scitranslmed.aau1099
  • Ayoola MB, Shack LA, Lee JH, et al. Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci. Sci Rep. 2022 Jul 12;12(1):11804, doi:10.1038/s41598-022-16007-7
  • Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol. 2023 Aug;74:102315, doi:10.1016/j.mib.2023.102315
  • Swain J, El Khoury M, Kempf J, et al. Effect of cardiolipin on the antimicrobial activity of a new amphiphilic aminoglycoside derivative on Pseudomonas aeruginosa. PLoS One. 2018 Aug 20;13(8):e0201752, doi:10.1371/journal.pone.0201752
  • El Khoury M, Swain J, Sautrey G, et al. Targeting bacterial cardiolipin enriched microdomains: An antimicrobial strategy used by amphiphilic aminoglycoside antibiotics. Sci Rep. 2017 Sep 6;7(1):10697, doi:10.1038/s41598-017-10543-3
  • Kreutzberger MA, Pokorny A, Almeida PF. Daptomycin-Phosphatidylglycerol domains in lipid membranes. Langmuir. 2017 Nov 28;33(47):13669–13679. doi:10.1021/acs.langmuir.7b01841
  • Mescola A, Ragazzini G, Alessandrini A. Daptomycin strongly affects the phase behavior of model lipid bilayers. J Phys Chem B. 2020 Oct 1;124(39):8562–8571. doi:10.1021/acs.jpcb.0c06640
  • Sato J, Tomita A, Sonoda T, et al. Theaflavin and its derivatives exert antibacterial action against Bacillus coagulans through adsorption to cell surface phospholipids. J Appl Microbiol. 2022 Sep;133(3):1781–1790. doi:10.1111/jam.15690