821
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Differential susceptibility of geographically distinct Ixodes ricinus populations to tick-borne encephalitis virus and louping ill virus

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Kahl O, Pogodina VV, Poponnikova T, et al. Chapter 1: A short history of TBE. The TBE book [Internet]. 2022 [cited 2022 Dec 22]; Available from: https://tbenews.com/tbe/tbe1/.
  • Ruzek D, Avšič Županc T, Borde J, et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir Res. 2019;164:23–51. doi:10.1016/j.antiviral.2019.01.014
  • Kreusch TM, Holding M, Hewson R, et al. A probable case of tick-borne encephalitis (TBE) acquired in England. Eurosurveillance. 2019;24:1900679. doi:10.2807/1560-7917.ES.2019.24.47.1900679
  • de Graaf JA, Reimerink JHJ, Voorn GP, et al. First human case of tick-borne encephalitis virus infection acquired in the Netherlands. Eurosurveillance. 2016;21:30318. doi:10.2807/1560-7917.ES.2016.21.33.30318
  • Weststrate AC, Knapen D, Laverman GD, et al. Increasing evidence of tick-borne encephalitis (TBE) virus transmission, the Netherlands. Eurosurveillance. 2017;22:30482. doi:10.2807/1560-7917.ES.2017.22.11.30482
  • Stoefs A, Heyndrickx L, De Winter J, et al. Autochthonous Cases of Tick-Borne Encephalitis, Belgium, 2020. Emerg Infect Dis. 2021;27:2179–2182. doi:10.3201/eid2708.211175
  • Randolph SE. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos Trans R Soc B: Biol Sci. 2001;356:1045–1056. doi:10.1098/rstb.2001.0893
  • Randolph SE, Green RM, Peacey MF, et al. Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology. 2000;121:15–23. doi:10.1017/S0031182099006083
  • Randolph SE, Rogers DJ. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc B: Biol Sci. 2000;267:1741–1744. doi:10.1098/rspb.2000.1204
  • Tsetsarkin KA, Vanlandingham DL, McGee CE, et al. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3:1895–1906. doi:10.1371/journal.ppat.0030201
  • Ytrehus B, Rocchi M, Brandsegg H, et al. Louping-ill virus serosurvey of Willow ptarmigan (Lagopus lagopus lagopus) in Norway. J Wildlife Dis. 2021;57. doi:10.7589/JWD-D-20-00068
  • Jensen PM, Skarphedinsson S, Semenov A. Tætheder af skovflåten (Ixodes ricinus) og koeksistens af Louping ill-virus og tick borne encephalitis-virus på Bornholm. [Densities of the tick (Ixodes ricinus) and coexistence of the Louping ill virus and tick borne encephalitis on the island of Bornholm]. Ugeskrift laeger. 2004;166:2563–2565.
  • Leonova GN, Kondratov IG, Maystrovskaya OS, et al. Louping ill virus (LIV) in the Far East. Arch Virol. 2015;160:663–673. doi:10.1007/s00705-014-2310-1
  • Jeffries CL, Mansfield KL, Phipps LP, et al. Louping ill virus: An endemic tick-borne disease of Great Britain. J Gen Virol. 2014;95:1005–1014. doi:10.1099/vir.0.062356-0
  • Gilbert L. Louping ill virus in the UK: a review of the hosts, transmission and ecological consequences of control. Exp Appl Acarol. 2016;68:363–374. doi:10.1007/s10493-015-9952-x
  • Davidson MM, Harry W, JohnAJ M. Louping ill in man: a forgotten disease. J Infect. 1991;23:241–249. doi:10.1016/0163-4453(91)92756-U
  • Randolph SE. Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda’s enduring paradigm. Ticks Tick-borne Dis. 2011;2:179–182. doi:10.1016/j.ttbdis.2011.07.004
  • Belova OA, Litov AG, Kholodilov IS, et al. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines. Ticks Tick-borne Dis. 2017;8:895–906. doi:10.1016/j.ttbdis.2017.07.008
  • Labuda M, Nuttall PA, Kožuch O, et al. Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia. 1993;49:802–805. doi:10.1007/BF01923553
  • Labuda M, Kozuch O, Zuffová E, et al. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology. 1997;235:138–143. doi:10.1006/viro.1997.8622
  • Hartemink NA, Randolph SE, Davis SA, et al. The basic reproduction number for complex disease systems: defining R(0) for tick-borne infections. Am Nat. 2008;171:743–754. doi:10.1086/587530
  • Labuda M, Randolph SE. Survival strategy of tick-borne encephalitis virus: Cellular basis and environmental determinants. Zentralblatt Bakteriol. 1999;289:513–524. doi:10.1016/S0934-8840(99)80005-X
  • Randolph SE, Miklisová D, Lysy J, et al. Incidence from coincidence: Patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology. 1999;118:177–186. doi:10.1017/S0031182098003643
  • Egyed L, Rónai Z, Dán Á. Hungarian tick-borne encephalitis viruses isolated from a 0.5-ha focus are closely related to Finnish strains. Ticks Tick-borne Dis. 2018;9:1064–1068. doi:10.1016/j.ttbdis.2018.03.032
  • Topp AK, Springer A, Dobler G, et al. New and Confirmed Foci of Tick-Borne Encephalitis Virus (TBEV) in Northern Germany Determined by TBEV Detection in Ticks. Pathogens. 2022;11(126.
  • Jahfari S, De Vries A, Rijks JM, et al. Tick-borne encephalitis virus in ticks and roe deer, the Netherlands. Emerg Infect Dis. 2017;23:1028–1030. doi:10.3201/eid2306.161247
  • Esser HJ, Lim SM, de Vries A, et al. Continued circulation of tick-borne encephalitis virus variants and detection of novel transmission foci, the Netherlands. Emerg Infect Dis. 2022;28:2416–2424. doi:10.3201/eid2812.220552
  • Holding M, Dowall SD, Medlock JM, et al. Detection of new endemic focus of tick-borne encephalitis virus (TBEV), Hampshire/Dorset border, England, September 2019. Eurosurveillance. 2019;24:1900658. doi:10.2807/1560-7917.ES.2019.24.47.1900658
  • Bell-Sakyi L, Zweygarth E, Blouin EF, et al. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi:10.1016/j.pt.2007.07.009
  • Holmes EC, McGuire K, Gould EA, et al. Tracing the origins of louping ill virus by molecular phylogenetic analysis. J General Virol. 1998;79:981–988. doi:10.1099/0022-1317-79-5-981
  • Mandl CW, Kunz C, Heinz FX. Presence of poly(A) in a flavivirus: significant differences between the 3′ noncoding regions of the genomic RNAs of tick-borne encephalitis virus strains. J Virol. 1991;65:4070–4077. doi:10.1128/jvi.65.8.4070-4077.1991
  • Hoornweg TE, Godeke G-J, Hoogerwerf MN, et al. Rescue and in vitro characterization of a divergent TBEV-Eu strain from the Netherlands. Sci Rep. 2023;13:2872. doi:10.1038/s41598-023-29075-0
  • Krull C, Böhme B, Clausen PH, et al. Optimization of an artificial tick feeding assay for Dermacentor reticulatus. Parasites and Vectors. 2017;10(60.
  • Oliver JD, Lynn GE, Burkhardt NY, et al. Infection of immature Ixodes scapularis (Acari: Ixodidae) by membrane feeding. J Med Entomol. 2016;53:409–415. doi:10.1093/jme/tjv241
  • Kröber T, Guerin PM. An in vitro feeding assay to test acaricides for control of hard ticks. Pest Manag Sci. 2007;63:17–22. doi:10.1002/ps.1293
  • Gall CA, Reif KE, Scoles GA, et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016;10:1846–1855. doi:10.1038/ismej.2015.266
  • Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Epidemiol. 1938;27:493–497. doi:10.1093/oxfordjournals.aje.a118408
  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5:1–19. doi:10.1186/1471-2105-5-113
  • Nei M, Kumar S. Molecular evolution and phylogenetics. Oxford: Oxford University Press; 2000.
  • Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–1256. doi:10.1093/molbev/msn083
  • Kumar S, Stecher G, Tamura K. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;33:1870–1874. doi:10.1093/molbev/msw054
  • Hartig F, Maintainer Florian H. Package ‘DHARMa’. Vienna: R Development Core Team; 2017.
  • Brooks ME, Kristensen K, van Benthem KJ, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi:10.32614/RJ-2017-066
  • [44] Lenth RV. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6. 0.(2021). 2021.
  • R core team. R: A language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2021; Available from: https://www.r-project.org/.
  • Allaire J. RStudio: integrated development environment for R. Boston. MA. 2012;770:165–171.
  • Asghar N, Pettersson JHO, Dinnetz P, et al. Deep sequencing analysis of tick-borne encephalitis virus from questing ticks at natural foci reveals similarities between quasispecies pools of the virus. J Gen Virol. 2017;98:413–421. doi:10.1099/jgv.0.000704
  • Wójcik-Fatla A, Cisak E, Zajac V, et al. Prevalence of tick-borne encephalitis virus in Ixodes ricinus and Dermacentor reticulatus ticks collected from the Lublin region (eastern Poland). Ticks Tick-borne Dis. 2011;2:16–19. doi:10.1016/j.ttbdis.2010.10.001
  • Jääskeläinen A, Tonteri E, Pieninkeroinen I, et al. Siberian subtype tick-borne encephalitis virus in Ixodes ricinus in a newly emerged focus, Finland. Ticks and Tick-borne Dis. 2016;7:216–223. doi:10.1016/j.ttbdis.2015.10.013
  • Asghar N, Lindblom P, Melik W, et al. Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance. PLoS One. 2014;9:e103264. doi:10.1371/journal.pone.0103264
  • Liebig K, Boelke M, Grund D, et al. Tick populations from endemic and non-endemic areas in Germany show differential susceptibility to TBEV. Sci Rep. 2020;10:15478. doi:10.1038/s41598-020-71920-z
  • Liebig K, Boelke M, Grund D, et al. The stable matching problem in TBEV enzootic circulation: How important is the perfect tick-virus match? Microorganisms. 2021;9:196. doi:10.3390/microorganisms9010196
  • Couper LI, Yang Y, Yang XF, et al. Comparative vector competence of North American Lyme disease vectors. Parasites Vectors. 2020;13:29. doi:10.1186/s13071-020-3893-x
  • Kilpatrick AM, Fonseca DM, Ebel GD, et al. Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile Virus. Am J Trop Med Hyg. 2010;83:607–613. doi:10.4269/ajtmh.2010.10-0005
  • Moraes-Filho J, Krawczak FS, Costa FB, et al. Comparative evaluation of the vector competence of four South American populations of the Rhipicephalus sanguineus group for the bacterium Ehrlichia canis, the agent of canine monocytic ehrlichiosis. PLoS One. 2015;10:e0139386. doi:10.1371/journal.pone.0139386
  • Vogels CBF, Fros JJ, Göertz GP, et al. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasites Vectors. 2016;9:393. doi:10.1186/s13071-016-1677-0
  • Røed KH, Kvie KS, Hasle G, et al. Phylogenetic lineages and postglacial dispersal dynamics characterize the genetic structure of the tick, Ixodes ricinus, in Northwest Europe. Munderloh UG, editor. PLoS One. 2016;11:e0167450.
  • Dinnis RE, Seelig F, Bormane A, et al. Multilocus sequence typing using mitochondrial genes (mtMLST) reveals geographic population structure of Ixodes ricinus ticks. Ticks Tick-borne Dis. 2014;5:152–160. doi:10.1016/j.ttbdis.2013.10.001
  • Migné CV, Hönig V, Bonnet SI, et al. Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors. Sci Rep. 2022;12:491. doi:10.1038/s41598-021-04498-9
  • Romano D, Stefanini C, Canale A, et al. Artificial blood feeders for mosquito and ticks—Where from, where to? Acta Trop. 2018;183:43–56. doi:10.1016/j.actatropica.2018.04.009
  • Randolph SE. The impact of tick ecology on pathogen transmission dynamics. Ticks: Biol Dis Control. 2008: 40–72. doi:10.1017/CBO9780511551802.003
  • De Oliveira R P, Hutet E, Lancelot R, et al. Differential vector competence of Ornithodoros soft ticks for African swine fever virus: What if it involves more than just crossing organic barriers in ticks? Parasites Vectors. 2020;13:618. doi:10.1186/s13071-020-04497-1
  • Daveu R, Hervet C, Sigrist L, et al. Sequence diversity and evolution of a group of iflaviruses associated with ticks. Arch Virol. 2021;166:1843–1852. doi:10.1007/s00705-021-05060-8
  • Cutler SJ, Vayssier-Taussat M, Estrada-Peña A, et al. Tick-borne diseases and co-infection: Current considerations. Ticks Tick Borne Dis. 2021;12:101607. doi:10.1016/j.ttbdis.2020.101607
  • Bakker JW, Begemann HLM, Fonville M, et al. Differential associations of horizontally and vertically transmitted symbionts on Ixodes ricinus behaviour and physiology. Parasites Vectors. 2023;16:443. doi:10.1186/s13071-023-06025-3
  • Bhide MR, Travnicek M, Levkutova M, et al. Sensitivity of Borrelia genospecies to serum complement from different animals and human: A host-pathogen relationship. FEMS Immunol Med Microbiol. 2005;43:165–172. doi:10.1016/j.femsim.2004.07.012
  • Krawczyk AI, Bakker JW, Koenraadt CJM, et al. Tripartite Interactions among Ixodiphagus hookeri, Ixodes ricinus and deer: differential Interference with transmission cycles of tick-borne pathogens. Pathogens. 2020: 9.
  • Paulsen KM, Granquist EG, Okstad W, et al. Experimental infection of lambs with tickborne encephalitis virus and co-infection with Anaplasma phagocytophilum. PLoS One. 2019;14:e0226836.
  • Reid H, Buxton D, Pow I, et al. Response of sheep to experimental concurrent infection with tick-borne fever (Cytoecetes phagocytophila) and louping-ill virus. Res Vet Sci. 1986;41:56–62. doi:10.1016/S0034-5288(18)30572-1
  • Luu L, Bradley G, Al-Khafaji A, et al. The effect of co-infecting Anaplasma phagocytophilum on replication of Langat Virus, a model for Louping ill virus, in Ixodes spp. tick cells. Access Microbiol. 2019;1:92.
  • Ni X-B, Cui X-M, Liu J-Y, et al. Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol. 2023;8:162–173. doi:10.1038/s41564-022-01275-w
  • Li C-X, Shi M, Tian J-H, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife. 2015;4:e05378.
  • Olmo RP, Todjro YMH, Aguiar ERGR, et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat Microbiol. 2023;8:135–149. doi:10.1038/s41564-022-01289-4
  • Slovák M, Kazimírová M, Siebenstichová M, et al. Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks. Ticks Tick-borne Dis. 2014;5:962–969. doi:10.1016/j.ttbdis.2014.07.019
  • Gritsun TS, Gould EA. Direct repeats in the flavivirus 3′ untranslated region; a strategy for survival in the environment? Virology. 2007;358:258–265. doi:10.1016/j.virol.2006.09.033
  • Khasnatinov MA, Tuplin A, Gritsun DJ, et al. Tick-borne encephalitis virus structural proteins are the primary viral determinants of non-viraemic transmission between ticks whereas non-structural proteins affect cytotoxicity. PLoS One. 2016;11:e0158105. doi:10.1371/journal.pone.0158105
  • Weissenböck H, Bakonyi T, Rossi G, et al. Usutu virus, Italy, 1996. Emerg Infect Dis. 2013;19:274–277. doi:10.3201/eid1902.121191
  • Göertz GP, Fros JJ, Miesen P, et al. Noncoding subgenomic flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile Virus transmission by Culex pipiens mosquitoes. J Virol. 2016;90:10145–10159. doi:10.1128/JVI.00930-16
  • Belova OA, Kholodilov IS, Litov AG, et al. The ability of Ixodid ticks (Acari: Ixodidae) to support reproduction of the tick-borne encephalitis virus. Entomol Rev. 2018;98:1369–1378. doi:10.1134/S0013873818090142
  • Bournez L, Umhang G, Moinet M, et al. Disappearance of TBEV circulation among rodents in a natural focus in Alsace, eastern France. Pathogens. 2020;9(930.
  • Carpi G, Kitchen A, Kim HL, et al. Mitogenomes reveal diversity of the European Lyme borreliosis vector Ixodes ricinus in Italy. Mol Phylogenetics Evol. 2016;101:194–202. doi:10.1016/j.ympev.2016.05.009
  • Mikryukova TP, Moskvitina NS, Kononova YV, et al. Surveillance of tick-borne encephalitis virus in wild birds and ticks in Tomsk city and its suburbs (Western Siberia). Ticks Tick-borne Dis. 2014;5:145–151. doi:10.1016/j.ttbdis.2013.10.004
  • Both C, Robinson RA, van der Jeugd HP. Long-distance dispersal in migratory pied flycatchers Ficedula hypoleuca is relatively common between the UK and the Netherlands. Jo Avian Biol. 2012;43:193–197. doi:10.1111/j.1600-048X.2012.05721.x
  • Folly AJ, Lawson B, Lean FZ, et al. Detection of Usutu virus infection in wild birds in the United Kingdom, 2020. Eurosurveillance. 2020;25:2001732. doi:10.2807/1560-7917.ES.2020.25.41.2001732