1,624
Views
0
CrossRef citations to date
0
Altmetric
Tuberculosis(TB)-what is new

Mycobacterium tuberculosis hijacks host macrophages-derived interleukin 16 to block phagolysosome maturation for enhancing intracellular growth

, , , , , , , , , & show all
Article: 2322663 | Received 16 Oct 2023, Accepted 20 Feb 2024, Published online: 03 Mar 2024

References

  • Chakaya J, Khan M, Ntoumi F, et al. Global Tuberculosis Report 2020 - Reflections on the Global TB burden, treatment and prevention efforts. Int J Infect Dis. 2021;113(Suppl 1):S7–s12.
  • Wang L, Liu Z, Wang J, et al. Oxidization of TGFβ-activated kinase by MPT53 is required for immunity to Mycobacterium tuberculosis. Nat Microbiol. 2019;4(8):1378–1388.
  • Chakaya J, Petersen E, Nantanda R, et al. The WHO Global Tuberculosis 2021 Report - not so good news and turning the tide back to End TB. Int J Infect Dis. 2022;124(Suppl 1):S26–Ss9.
  • Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, et al. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol. 2023;39(8):206.
  • Churchyard GJ, Kaplan G, Fallows D, et al. Advances in immunotherapy for tuberculosis treatment. Clin Chest Med. 2009;30(4):769–782, ix.
  • Mi J, Liang Y, Liang J, et al. The Research Progress in Immunotherapy of Tuberculosis. Front Cell Infect Microbiol. 2021;11:763591.
  • Bouzeyen R, Javid B. Therapeutic Vaccines for Tuberculosis: An Overview. Front Immunol. 2022;13:878471.
  • Uhlin M, Andersson J, Zumla A, et al. Adjunct immunotherapies for tuberculosis. J Infect Dis. 2012;205(Suppl 2):S325–S334.
  • Chai Q, Wang L, Liu CH, et al. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol. 2020;17(9):901–913.
  • Qiang L, Zhang Y, Lei Z, et al. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination. Nat Commun. 2023;14(1):1430.
  • Hu Y, Wen Z, Liu S, et al. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect. 2020;80(6):e19–e26.
  • Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci. 2020;77(10):1859–1878.
  • Dai Y, Zhu C, Xiao W, et al. Mycobacterium tuberculosis hijacks host TRIM21- and NCOA4-dependent ferritinophagy to enhance intracellular growth. J Clin Invest. 2023;133(8).
  • Cohen SB, Gern BH, Urdahl KB. The Tuberculous Granuloma and Preexisting Immunity. Annu Rev Immunol. 2022;40:589–614.
  • Liu F, Chen J, Wang P, et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun. 2018;9(1):4295.
  • Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10(1):1973.
  • Wang J, Li BX, Ge PP, et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat Immunol. 2015;16(3):237–245.
  • Herrera M, Keynan Y, Lopez L, et al. Cytokine/chemokine profiles in people with recent infection by Mycobacterium tuberculosis. Front Immunol. 2023;14:1129398.
  • Harris J, Hope JC, Keane J. Tumor necrosis factor blockers influence macrophage responses to Mycobacterium tuberculosis. J Infect Dis. 2008;198(12):1842–1850.
  • Bobadilla K, Jaime SE, González ME, et al. Human phagosome processing of Mycobacterium tuberculosis antigens is modulated by interferon-γ and interleukin-10. Immunology. 2013;138(1):34–46.
  • Bai W, Liu H, Ji Q, et al. TLR3 regulates mycobacterial RNA-induced IL-10 production through the PI3 K/AKT signaling pathway. Cell Signal. 2014;26(5):942–950.
  • Cruikshank WW, Kornfeld H, Center DM. Interleukin-16. J Leukoc Biol. 2000;67(6):757–766.
  • Gorvel L, Al Moussawi K, Ghigo E, et al. Tropheryma whipplei, the Whipple's disease bacillus, induces macrophage apoptosis through the extrinsic pathway. Cell Death Dis. 2010;1(4):e34.
  • Ahn DS, Parker D, Planet PJ, et al. Secretion of IL-16 through TNFR1 and calpain-caspase signaling contributes to MRSA pneumonia. Mucosal Immunol. 2014;7(6):1366–1374.
  • Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci. 2017;74(9):1625–1648.
  • Liang M, Habib Z, Sakamoto K, et al. Mycobacteria and Autophagy: Many Questions and Few Answers. Curr Issues Mol Biol. 2017;21:63–72.
  • Miller BK, Hughes R, Ligon LS, et al. Mycobacterium tuberculosis SatS is a chaperone for the SecA2 protein export pathway. Elife. 2019: 8:e40063.
  • Zhang QA, Ma S, Li P, et al. The dynamics of Mycobacterium tuberculosis phagosome and the fate of infection. Cell Signal. 2023;108:110715.
  • Chandra V, Mahajan S, Saini A, et al. Human IL10 gene repression by Rev-erbα ameliorates Mycobacterium tuberculosis clearance. J Biol Chem. 2013;288(15):10692–10702.
  • Zhang Y, Tuzova M, Xiao ZX, et al. Pro-IL-16 recruits histone deacetylase 3 to the Skp2 core promoter through interaction with transcription factor GABP. J Immunol. 2008;180(1):402–408.
  • Zhang Y, Center DM, Wu DM, et al. Processing and activation of pro-interleukin-16 by caspase-3. J Biol Chem. 1998;273(2):1144–1149.
  • Fava A, Rao DA, Mohan C, et al. Urine Proteomics and Renal Single-Cell Transcriptomics Implicate Interleukin-16 in Lupus Nephritis. Arthritis Rheumatol. 2022;74(5):829–839.
  • Xie Y, Meijer AH, Schaaf MJM. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol. 2020;8:620984.
  • Takaki K, Davis JM, Winglee K, et al. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish. Nat Protoc. 2013;8(6):1114–1124.
  • Lin C, Tang Y, Wang Y, et al. WhiB4 Is Required for the Reactivation of Persistent Infection of Mycobacterium marinum in Zebrafish. Microbiol Spectr. 2022;10(2):e0044321.
  • Mege JL, Meghari S, Honstettre A, et al. The two faces of interleukin 10 in human infectious diseases. Lancet Infect Dis. 2006;6(9):557–569.
  • Meagher C, Beilke J, Arreaza G, et al. Neutralization of interleukin-16 protects nonobese diabetic mice from autoimmune type 1 diabetes by a CCL4-dependent mechanism. Diabetes. 2010;59(11):2862–2871.
  • Smith S, Wu PW, Seo JJ, et al. IL-16/miR-125a axis controls neutrophil recruitment in pristane-induced lung inflammation. JCI Insight. 2018;3(15):e120798.
  • Cohen SB, Gern BH, Delahaye JL, et al. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe. 2018;24(3):439–46.e4.
  • Khan N, Mendonca L, Dhariwal A, et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol. 2019;12(3):772–783.
  • Zhang G, Liu X, Wang W, et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle. 2016;15(18):2527–2538.
  • Hill NS, Welch MD. A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nat Commun. 2022;13(1):3608.
  • Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells. 2016;34(8):2210–2223.
  • Frigui W, Bottai D, Majlessi L, et al. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog. 2008;4(2):e33.
  • Alikhanyan K, Chen Y, Kraut S, et al. Targeting alveolar macrophages shows better treatment response than deletion of interstitial macrophages in EGFR mutant lung adenocarcinoma. Immun Inflamm Dis. 2020;8(2):181–187.
  • Wu X, Wu Y, Zheng R, et al. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep. 2021;22(7):e51678.
  • Yang Q, Liao M, Wang W, et al. CD157 Confers Host Resistance to Mycobacterium tuberculosis via TLR2-CD157-PKCzeta-Induced Reactive Oxygen Species Production. mBio. 2019;10(4):e01949-19.