1,231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genomic epidemiology and ceftazidime-avibactam high-level resistance mechanisms of Pseudomonas aeruginosa in China from 2010 to 2022

, , , , , , , , , , , & ORCID Icon show all
Article: 2324068 | Received 22 Nov 2023, Accepted 22 Feb 2024, Published online: 11 Mar 2024

References

  • Hawkey PM, Warren RE, Livermore DM, et al. Treatment of infections caused by multidrug-resistant gram-negative bacteria: report of the British society for antimicrobial chemotherapy/healthcare infection society/British infection association joint working party. J Antimicrob Chemother. 2018;73(suppl_3):iii2–iii78. doi:10.1093/jac/dky027
  • Karlowsky JA, Lob SH, Raddatz J, et al. In vitro activity of imipenem/relebactam and ceftolozane/tazobactam against clinical isolates of gram-negative bacilli with difficult-to-treat resistance and multidrug-resistant phenotypes-study for monitoring antimicrobial resistance trends, United States 2015–2017. Clin Infect Dis. 2021;72(12):2112–2120. doi:10.1093/cid/ciaa381
  • Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543(7643):15. doi:10.1038/nature.2017.21550
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. doi:10.1128/CMR.00040-09
  • Wolter DJ, Lister PD. Mechanisms of β-lactam resistance among Pseudomonas aeruginosa. Curr Pharm Des. 2013;19(2):209–222. doi:10.2174/138161213804070311
  • Horcajada JP, Montero M, Oliver A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):e00031-19. Published 2019 Aug 28. doi:10.1128/CMR.00031-19
  • Nordmann P, Ronco E, Naas T, et al. Characterization of a novel extended-spectrum beta-lactamase from pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993;37(5):962–969. doi:10.1128/AAC.37.5.962
  • Lahlaoui H, Ben Moussa M. Detection of PEr 1 extended-spectrum β-lactamase among nosocomial providencia stuartii isolates in Tunisia. Tunis Med. 2014;92(4):258–261.
  • Liu X, Lei T, Yang Y, et al. Structural basis of PER-1-mediated cefiderocol resistance and synergistic inhibition of PER-1 by cefiderocol in combination with avibactam or durlobactam in acinetobacter baumannii. Antimicrob Agents Chemother. 2022;66(12):e0082822. doi:10.1128/aac.00828-22
  • Picão RC, Poirel L, Demarta A, et al. Expanded-spectrum beta-lactamase PER-1 in an environmental Aeromonas media isolate from Switzerland. Antimicrob Agents Chemother. 2008;52(9):3461–3462. doi:10.1128/AAC.00770-08
  • Wu J, Xie L, Zhang F, et al. Molecular characterization of ISCR1-mediated blaPER-1 in a non-O1, non-O139 Vibrio cholerae strain from China. Antimicrob Agents Chemother. 2015;59(7):4293–4295. doi:10.1128/AAC.00166-15
  • Torrens G, van der Schalk TE, Cortes-Lara S, et al. Susceptibility profiles and resistance genomics of Pseudomonas aeruginosa isolates from European ICUs participating in the ASPIRE-ICU trial. J Antimicrob Chemother. 2022;77(7):1862–1872. doi:10.1093/jac/dkac122
  • Sastre-Femenia MÀ, Fernández-Muñoz A, Gomis-Font MA, et al. Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysis. Lancet Reg Health Eur. 2023;34:100736. Published 2023 Sep 19. doi:10.1016/j.lanepe.2023.100736
  • Haghighi S, Reza Goli H. High prevalence of blaVEB, blaGES and blaPER genes in beta-lactam resistant clinical isolates of Pseudomonas aeruginosa. AIMS Microbiol. 2022;8(2):153–166. Published 2022 Apr 25. doi:10.3934/microbiol.2022013
  • Ortiz de la Rosa JM, Nordmann P, Poirel L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J Antimicrob Chemother. 2019;74(7):1934–1939. doi:10.1093/jac/dkz149
  • Tu Y, Wang D, Zhu Y, et al. Emergence of a KPC-90 variant that confers resistance to ceftazidime-avibactam in an ST463 carbapenem-resistant pseudomonas aeruginosa strain. Microbiol Spectr. 2022;10(1):e0186921. doi:10.1128/spectrum.01869-21
  • Zhu Y, Chen J, Shen H, et al. Emergence of ceftazidime- and avibactam-resistant klebsiella pneumoniae carbapenemase-producing pseudomonas aeruginosa in China. mSystems. 2021;6(6):e0078721. doi:10.1128/mSystems.00787-21
  • Zhang P, Wang J, Li Y, et al. Emergence of blaKPC-33-harboring hypervirulent ST463 pseudomonas aeruginosa causing fatal infections in China. J Infect. 2022;85(4):e86–e88. doi:10.1016/j.jinf.2022.07.011
  • Li X, Zhang X, Cai H, et al. Overexpression of blaGES-1 due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235. Drug Resist Updat. 2023;69:100973. doi:10.1016/j.drup.2023.100973
  • CLSI. Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI supplement M100. Berwyn (PA): Clinical and Laboratory Standards Institute; 2023.
  • European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version. 2022;9.0.
  • Sonnet P, Izard D, Mullié C. Prevalence of efflux-mediated ciprofloxacin and levofloxacin resistance in recent clinical isolates of Pseudomonas aeruginosa and its reversal by the efflux pump inhibitors 1-(1-naphthylmethyl)-piperazine and phenylalanine-arginine-β-naphthylamide. Int J Antimicrob Agents. 2012;39(1):77–80. doi:10.1016/j.ijantimicag.2011.08.005
  • Wick RR, Judd LM, Gorrie CL, et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. Published 2017 Jun 8. doi:10.1371/journal.pcbi.1005595
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi:10.1093/bioinformatics/btu153
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352
  • Grant JR, Enns E, Marinier E, et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023;51(W1):W484–W492. doi:10.1093/nar/gkad326
  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–1010. doi:10.1093/bioinformatics/btr039
  • Li X, Quan J, Ke H, et al. Emergence of a KPC variant conferring resistance to ceftazidime-avibactam in a widespread ST11 carbapenem-resistant klebsiella pneumoniae clone in China. Front Microbiol. 2021;12:724272. Published 2021 Aug 16. doi:10.3389/fmicb.2021.724272
  • Winkler ML, Papp-Wallace KM, Bonomo RA. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop. J Antimicrob Chemother. 2015;70(8):2279–2286. doi:10.1093/jac/dkv094
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi:10.1093/nar/25.17.3389
  • Edgar RC. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun. 2022;13(1):6968. Published 2022 Nov 15. doi:10.1038/s41467-022-34630-w
  • Harder E, Damm W, Maple J, et al. Opls3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. 2016;12(1):281–296. doi:10.1021/acs.jctc.5b00864
  • Sherman W, Day T, Jacobson MP, et al. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 2006;49(2):534–553. doi:10.1021/jm050540c
  • Petrella S, Ziental-Gelus N, Mayer C, et al. Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class a beta-lactamase KPC-2 identified in an Escherichia coli strain and an Enterobacter cloacae strain isolated from the same patient in France. Antimicrob Agents Chemother. 2008;52(10):3725–3736. doi:10.1128/AAC.00163-08
  • Zhu K, Borrelli KW, Greenwood JR, et al. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J Chem Inf Model. 2014;54(7):1932–1940. doi:10.1021/ci500118s
  • Li J, Abel R, Zhu K, et al. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 2011;79(10):2794–2812. doi:10.1002/prot.23106
  • Del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 2020;56(6):106196. doi:10.1016/j.ijantimicag.2020.106196
  • Wang L, Zhang X, Zhou X, et al. Insertion of ISPa1635 in ISCR1 creates a hybrid promoter for blaPER-1 resulting in resistance to novel β-lactam/β-lactamase inhibitor combinations and cefiderocol. Antimicrob Agents Chemother. 2023;67(6):e0013523. doi:10.1128/aac.00135-23
  • Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem. 2021;12(10):1623–1639. Published 2021 Aug 4. doi:10.1039/D1MD00200G
  • King DT, King AM, Lal SM, et al. Molecular mechanism of avibactam-mediated β-lactamase inhibition. ACS Infect Dis. 2015;1(4):175–184. doi:10.1021/acsinfecdis.5b00007
  • Therrien C, Levesque RC. Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiol Rev. 2000;24(3):251–262. doi:10.1016/S0168-6445(99)00039-X
  • Tamma PD, Aitken SL, Bonomo RA, et al. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant enterobacterales (CRE), and pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis. 2022;75(2):187–212. doi:10.1093/cid/ciac268
  • Berrazeg M, Jeannot K, Enguéné N, et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother. 2015;59(10):6248–6255. doi:10.1128/AAC.00825-15
  • Arca-Suárez J, Lasarte-Monterrubio C, BK R-J, et al. Molecular mechanisms driving the in vivo development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR Pseudomonas aeruginosa infections. J Antimicrob Chemother. 2021;76(1):91–100. doi:10.1093/jac/dkaa396
  • Fraile-Ribot PA, Fernández J, MA G-F, et al. In vivo evolution of GES β-lactamases driven by ceftazidime/avibactam treatment of Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 2021;65(9):e0098621), doi:10.1128/AAC.00986-21
  • Lahiri SD, Walkup GK, Whiteaker JD, et al. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J Antimicrob Chemother. 2015;70(6):1650–1658. doi:10.1093/jac/dkv004
  • Poirel L, Ortiz de la Rosa JM, Sadek M, et al. Impact of acquired broad-spectrum β-lactamases on susceptibility to cefiderocol and newly developed β-lactam/β-lactamase inhibitor combinations in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2022;66(4):e0003922. doi:10.1128/aac.00039-22
  • Dulanto Chiang A, Patil PP, Beka L, et al. Hypermutator strains of Pseudomonas aeruginosa reveal novel pathways of resistance to combinations of cephalosporin antibiotics and beta-lactamase inhibitors. PLoS Biol. 2022;20(11):e3001878. Published 2022 Nov 18. doi:10.1371/journal.pbio.3001878
  • Mojica MF, De La Cadena E, García-Betancur JC, et al. Molecular mechanisms of resistance to ceftazidime/avibactam in clinical isolates of enterobacterales and Pseudomonas aeruginosa in Latin American hospitals. mSphere. 2023;8(2):e0065122. doi:10.1128/msphere.00651-22
  • Sanz-García F, Hernando-Amado S, Martínez JL. Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime-avibactam. Antimicrob Agents Chemother. 2018;62(10):e01379-18. Published 2018 Sep 24. doi:10.1128/AAC.01379-18
  • Lahiri SD, Bradford PA, Nichols WW, et al. Structural and sequence analysis of class A β-lactamases with respect to avibactam inhibition: impact of Ω-loop variations. J Antimicrob Chemother. 2016;71(10):2848–2855. doi:10.1093/jac/dkw248
  • Cheng Q, Xu C, Chai J, et al. Structural insight into the mechanism of inhibitor resistance in CTX-M-199, a CTX-M-64 variant carrying the S130 T substitution. ACS Infect Dis. 2020;6(4):577–587. doi:10.1021/acsinfecdis.9b00345
  • Estabrook M, Kazmierczak KM, Wise M, et al. Molecular characterization of clinical isolates of Enterobacterales with elevated MIC values for aztreonam-avibactam from the INFORM global surveillance study, 2012–2017. J Glob Antimicrob Resist. 2021;24:316–320. doi:10.1016/j.jgar.2021.01.010
  • Wu S, Feng Y, Yang Y, et al. Characterization of a novel carbapenem-hydrolysing β-lactamase OXA-1041 in Escherichia coli. J Antimicrob Chemother. 2023;78(5):1288–1294. doi:10.1093/jac/dkad091
  • He J, Sun L, Zhang L, et al. A novel SXT/R391 integrative and conjugative element carries two copies of the blaNDM-1 gene in proteus mirabilis. mSphere. 2021;6(4):e0058821. doi:10.1128/mSphere.00588-21
  • Hall JPJ, Botelho J, Cazares A, et al. What makes a megaplasmid? Philos Trans R Soc Lond B Biol Sci. 2022;377(1842):20200472. doi:10.1098/rstb.2020.0472
  • Zhang X, Wang L, Li D, et al. Characterization of the novel plasmid-encoded MBL gene blaAFM-1, integrated into a blaIMP-45-bearing transposon Tn6485e in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. J Antimicrob Chemother. 2021;77(1):83–88. doi:10.1093/jac/dkab342
  • Linkevicius M, Sandegren L, Andersson DI. Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother. 2013;68(12):2809–2819. doi:10.1093/jac/dkt263