1,849
Views
0
CrossRef citations to date
0
Altmetric
Emerging and Re-Emerging Coronaviruses

Establishment of a human organoid-based evaluation system for assessing interspecies infection risk of animal-borne coronaviruses

, , , , , , , , , , , , , , , , , & show all
Article: 2327368 | Received 25 Dec 2023, Accepted 01 Mar 2024, Published online: 26 Mar 2024

References

  • Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536–544. doi:10.1038/s41564-020-0695-z
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
  • V'Kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021 Mar;19(3):155–170. doi:10.1038/s41579-020-00468-6
  • Gabutti G, d'Anchera E, Sandri F, et al. Coronavirus: update related to the current outbreak of COVID-19. Infect Dis Ther. 2020 Jun;9(2):241–253. doi:10.1007/s40121-020-00295-5
  • Wang N, Shang J, Jiang S, et al. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020;11:298. doi:10.3389/fmicb.2020.00298
  • Dijkman R, Jebbink MF, Koekkoek SM, et al. Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. J Virol. 2013 Jun;87(11):6081–6090. doi:10.1128/JVI.03368-12
  • Mulabbi EN, Tweyongyere R, Byarugaba DK. The history of the emergence and transmission of human coronaviruses. Onderstepoort J Vet Res. 2021 Feb 10;88(1):e1–e8. doi:10.4102/ojvr.v88i1.1872
  • Li Q, Shah T, Wang B, et al. Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front Cell Infect Microbiol. 2022;12:1081370. doi:10.3389/fcimb.2022.1081370
  • Li X, Zai J, Zhao Q, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020 Jun;92(6):602–611. doi:10.1002/jmv.25731
  • Fan Y, Zhao K, Shi ZL, et al. Bat coronaviruses in China. Viruses. 2019 Mar 2;11(3):210. doi:10.3390/v11030210
  • Plowright RK, Eby P, Hudson PJ, et al. Ecological dynamics of emerging bat virus spillover. Proc Biol Sci. 2015;282(1798):20142124.
  • Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310(5748):676–679. doi:10.1126/science.1118391
  • Lau SKP, Zhang L, Luk HKH, et al. Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding. J Infect Dis. 2018 Jun 20;218(2):197–207. doi:10.1093/infdis/jiy018
  • Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019 Mar;17(3):181–192. doi:10.1038/s41579-018-0118-9
  • Guo Z, Zhang C, Zhang C, et al. SARS-CoV-2-related pangolin coronavirus exhibits similar infection characteristics to SARS-CoV-2 and direct contact transmissibility in hamsters. iScience. 2022 Jun 17;25(6):104350. doi:10.1016/j.isci.2022.104350
  • Liu K, Pan X, Li L, et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell. 2021 Jun 24;184(13):3438–3451.e10. doi:10.1016/j.cell.2021.05.031
  • Menachery VD, Yount BL, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015 Dec;21(12):1508. doi:10.1038/nm.3985
  • Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013 Nov 28;503(7477):535–538. doi:10.1038/nature12711
  • Menachery VD, Yount BL, Jr, Sims AC, et al. SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A. 2016;113(11):3048–3053. doi:10.1073/pnas.1517719113
  • Huang XY, Chen Q, Sun MX, et al. A pangolin-origin SARS-CoV-2-related coronavirus: infectivity, pathogenicity, and cross-protection by preexisting immunity. Cell Discov. 2023 Jun 17;9(1):59. doi:10.1038/s41421-023-00557-9
  • Li Y, Wang H, Tang X, et al. SARS-CoV-2 and three related coronaviruses utilize multiple ACE2 orthologs and are potently blocked by an improved ACE2-Ig. J Virol. 2020 Oct 27;94(22):e01283-20. doi:10.1128/JVI.01283-20
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270–273. doi:10.1038/s41586-020-2012-7
  • Temmam S, Vongphayloth K, Salazar EB, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022;604(7905):330–336. doi:10.1038/s41586-022-04532-4
  • Xiao K, Zhai J, Feng Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020;583(7815):286–289. doi:10.1038/s41586-020-2313-x
  • Liu MQ, Lin HF, Li J, et al. A SARS-CoV-2-related virus from Malayan pangolin causes lung infection without severe disease in human ACE2-transgenic mice. J Virol. 2023 Feb 28;97(2):e0171922.
  • Cockrell AS, Leist SR, Douglas MG, et al. Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice. Mamm Genome. 2018 Aug;29(7–8):367–383. doi:10.1007/s00335-018-9760-9
  • Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571–584. doi:10.1038/s41580-020-0259-3
  • Blutt SE, Estes MK. Organoid models for infectious disease. Annu Rev Med. 2022 Jan 27;73:167–182. doi:10.1146/annurev-med-042320-023055
  • Jacob F, Pather SR, Huang WK, et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 2020 Dec 3;27(6):937–950.e9. doi:10.1016/j.stem.2020.09.016
  • Salahudeen AA, Choi SS, Rustagi A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature. 2020 Dec;588(7839):670–675. doi:10.1038/s41586-020-3014-1
  • Zhao B, Ni C, Gao R, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell. 2020 Oct;11(10):771–775. doi:10.1007/s13238-020-00718-6
  • Zhao X, Li C, Liu X, et al. Human intestinal organoids recapitulate enteric infections of enterovirus and coronavirus. Stem Cell Rep. 2021 Mar 9;16(3):493–504. doi:10.1016/j.stemcr.2021.02.009
  • Shahbazi F, Grandi V, Banerjee A, et al. Cannabinoids and cannabinoid receptors: the story so far. iScience. 2020 Jul 24;23(7):101301. doi:10.1016/j.isci.2020.101301
  • Nguyen LC, Yang D, Nicolaescu V, et al. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci Adv. 2022 Feb 25;8(8):eabi6110. doi:10.1126/sciadv.abi6110
  • Nelson KM, Bisson J, Singh G, et al. The essential medicinal chemistry of cannabidiol (CBD). J Med Chem. 2020 Nov 12;63(21):12137–12155. doi:10.1021/acs.jmedchem.0c00724
  • Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019 Feb 15;38(4):e100300. doi:10.15252/embj.2018100300
  • Rajan A, Weaver AM, Aloisio GM, et al. The human nose organoid respiratory virus model: an ex vivo human challenge model to study respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and evaluate therapeutics. mBio. 2022 Feb 15;13(1):e0351121. doi:10.1128/mbio.03511-21
  • Zeng LP, Gao YT, Ge XY, et al. Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response. J Virol. 2016 Jul 15;90(14):6573–6582. doi:10.1128/JVI.03079-15
  • Shuai H, Chan JF, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022 Mar;603(7902):693–699. doi:10.1038/s41586-022-04442-5
  • Lau SKP, Fan RYY, Zhu L, et al. Isolation of MERS-related coronavirus from lesser bamboo bats that uses DPP4 and infects human-DPP4-transgenic mice. Nat Commun. 2021 Jan 11;12(1):216. doi:10.1038/s41467-020-20458-9
  • Singh A, Singh RS, Sarma P, et al. A comprehensive review of animal models for coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin. 2020 Jun;35(3):290–304. doi:10.1007/s12250-020-00252-z
  • Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 2020 Jul 2;27(1):125–136 e7. doi:10.1016/j.stem.2020.06.015
  • Katsura H, Sontake V, Tata A, et al. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell. 2020 Dec 3;27(6):890. doi:10.1016/j.stem.2020.10.005
  • Chatterjee S, Bhattacharya M, Nag S, et al. A detailed overview of SARS-CoV-2 Omicron: its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies. Viruses. 2023 Jan 5;15(1):167. doi:10.3390/v15010167
  • Chiu MC, Li C, Liu X, et al. A bipotential organoid model of respiratory epithelium recapitulates high infectivity of SARS-CoV-2 Omicron variant. Cell Discov. 2022 Jun 17;8(1):57. doi:10.1038/s41421-022-00422-1
  • Chiu MC, Li C, Liu XJ, et al. Human nasal organoids model SARS-CoV-2 upper respiratory infection and recapitulate the differential infectivity of emerging variants. mBio. 2022 Aug 8;13(4):e01944-22.
  • Li C, Huang J, Yu Y, et al. Human airway and nasal organoids reveal escalating replicative fitness of SARS-CoV-2 emerging variants. Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2300376120. doi:10.1073/pnas.2300376120
  • Gordon DE, Hiatt J, Bouhaddou M, et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020 Dec 4;370(6521):eabe9403. doi:10.1126/science.abe9403
  • Krishnamoorthy P, Raj AS, Roy S, et al. Comparative transcriptome analysis of SARS-CoV, MERS-CoV, and SARS-CoV-2 to identify potential pathways for drug repurposing. Comput Biol Med. 2021 Jan;128:104123. doi:10.1016/j.compbiomed.2020.104123
  • Li X, Zhang Z, Wang Z, et al. Cell deaths: involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduct Target Ther. 2022 Jun 13;7(1):186. doi:10.1038/s41392-022-01043-6
  • Edwards AM, Baric RS, Saphire EO, et al. Stopping pandemics before they start: lessons learned from SARS-CoV-2. Science. 2022;375(6585):1133–1139. doi:10.1126/science.abn1900