600
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Porcine low-density lipoprotein receptor plays an important role in classical swine fever virus infection

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2327385 | Received 01 Jun 2023, Accepted 01 Mar 2024, Published online: 21 Mar 2024

References

  • Smith DB, Meyers G, Bukh J, et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol. 2017;98(8):2106–2112. doi:10.1099/jgv.0.000873
  • Postel A, Smith DB, Becher P. Proposed update to the taxonomy of pestiviruses: eight additional species within the genus pestivirus, family flaviviridae. Viruses. 2021;13(8):1542. doi:10.3390/v13081542
  • Walker PJ, Siddell SG, Lefkowitz EJ, et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Arch Virol. 2022;167(11):2429–2440. doi:10.1007/s00705-022-05516-5
  • Tautz N, Tews BA, Meyers G. The molecular biology of pestiviruses. Adv Virus Res. 2015;93:47–160. doi:10.1016/bs.aivir.2015.03.002
  • Postel A, Austermann-Busch S, Petrov A, et al. Epidemiology, diagnosis and control of classical swine fever: recent developments and future challenges. Transbound Emerg Dis. 2018;65(S1):248–261. doi:10.1111/tbed.12676
  • Moennig V, Becher P. Pestivirus control programs: how far have we come and where are we going? Anim Health Res Rev. 2015;16(1):83–87. doi:10.1017/S1466252315000092
  • Kirkland PD, Frost MJ, Finlaison DS, et al. Identification of a novel virus in pigs—Bungowannah virus: a possible new species of pestivirus. Virus Res. 2007;129(1):26–34. doi:10.1016/j.virusres.2007.05.002
  • Finlaison DS, King KR, Frost MJ, et al. Field and laboratory evidence that Bungowannah virus, a recently recognised pestivirus, is the causative agent of the porcine myocarditis syndrome (PMC). Vet Microbiol. 2009;136(3–4):259–265. doi:10.1016/j.vetmic.2008.11.026
  • Lamp B, Schwarz L, Hogler S, et al. Novel pestivirus species in pigs, Austria, 2015. Emerg Infect Dis. 2017;23(7):1176–1179. doi:10.3201/eid2307.170163
  • Jo WK, van Elk C, van de Bildt M, et al. An evolutionary divergent pestivirus lacking the Npro gene systemically infects a whale species. Emerg Microbes Infect. 2019;8(1):1383–1392. doi:10.1080/22221751.2019.1664940
  • Grummer B, Grotha S, Greiser-Wilke I. Bovine viral diarrhoea virus is internalized by Clathrin-dependent receptor-mediated endocytosis. J Vet Med B Infect Dis Vet Public Health. 2004;51(10):427–432. doi:10.1111/j.1439-0450.2004.00798.x
  • Shi BJ, Liu CC, Zhou J, et al. Entry of classical swine fever virus into PK-15 cells via a pH-, dynamin-, and cholesterol-dependent, clathrin-mediated endocytic pathway that requires Rab5 and Rab7. J Virol. 2016;90(20):9194–9208. doi:10.1128/JVI.00688-16
  • Maurer K, Krey T, Moennig V, et al. CD46 is a cellular receptor for bovine viral diarrhea virus. J Virol. 2004;78(4):1792–1799. doi:10.1128/JVI.78.4.1792-1799.2004
  • Leveringhaus E, Cagatay GN, Hardt J, et al. Different impact of bovine complement regulatory protein 46 (CD46bov) as a cellular receptor for members of the species Pestivirus H and Pestivirus G. Emerg Microbes Infect. 2022;11(1):60–72. doi:10.1080/22221751.2021.2011620
  • Schmeiser S, Mast J, Thiel HJ, et al. Morphogenesis of pestiviruses: new insights from ultrastructural studies of strain Giraffe-1. J Virol. 2014;88(5):2717–2724. doi:10.1128/JVI.03237-13
  • Drager C, Beer M, Blome S. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro. Arch Virol. 2015;160(3):739–746. doi:10.1007/s00705-014-2313-y
  • Cagatay GN, Antos A, Suckstorff O, et al. Porcine complement regulatory protein CD46 is a major receptor for atypical porcine pestivirus but not for classical swine fever virus. J Virol. 2021;95(9):e02186–20. doi:10.1128/JVI.02186-20
  • Chen J, He W-R, Shen L, et al. The laminin receptor Is a cellular attachment receptor for classical swine fever virus. J Virol. 2015;89(9):4894–4906. doi:10.1128/JVI.00019-15
  • Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34–47. doi:10.1126/science.3513311
  • [Lo] Surdo P, Bottomley MJ, Calzetta A, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011;12(12):1300–1305. doi:10.1038/embor.2011.205
  • Hofer F, Gruenberger M, Kowalski H, et al. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci U S A. 1994;91(5):1839–1842. doi:10.1073/pnas.91.5.1839
  • Basnet S, Palmenberg AC, Gern JE. Rhinoviruses and their receptors. Chest. 2019;155(5):1018–1025. doi:10.1016/j.chest.2018.12.012
  • Finkelshtein D, Werman A, Novick D, et al. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A. 2013;110(18):7306–7311. doi:10.1073/pnas.1214441110
  • Monazahian M, Bohme I, Bonk S, et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J Med Virol. 1999;57(3):223–229. doi:10.1002/(SICI)1096-9071(199903)57:3<223::AID-JMV2>3.0.CO;2-4
  • Agnello V, Abel G, Elfahal M, et al. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1999;96(22):12766–12771. doi:10.1073/pnas.96.22.12766
  • Albecka A, Belouzard S, de Beeck AO, et al. Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology. 2012;55(4):998–1007. doi:10.1002/hep.25501
  • [Osuna-Ramos] JF, Reyes-Ruiz JM, Del Ángel RM. The role of host cholesterol during flavivirus infection. Front Cell Infect Microbiol. 2018;8:388. doi:10.3389/fcimb.2018.00388
  • Krey T, Moussay E, Thiel HJ, et al. Role of the low-density lipoprotein receptor in entry of bovine viral diarrhea virus. J Virol. 2006;80(21):10862–7. doi:10.1128/JVI.01589-06
  • Zaruba M, Chen HW, Pietsch OF, et al. Adam17 Is an essential factor for the infection of bovine cells with pestiviruses. Viruses. 2022;14(2):381. doi:10.3390/v14020381
  • Postel A, Schmeiser S, Zimmermann B, et al. The European classical swine fever virus database: blueprint for a pathogen-specific sequence database with integrated sequence analysis tools. Viruses. 2016;8(11):302. doi:10.3390/v8110302
  • Meyers G, Thiel HJ, Rumenapf T. Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J Virol. 1996;70(3):1588–1595. doi:10.1128/jvi.70.3.1588-1595.1996
  • Postel A, Becher P. Genetically distinct pestiviruses pave the way to improved classical swine fever marker vaccine candidates based on the chimeric pestivirus concept. Emerg Microbes Infect. 2020;9(1):2180–2189. doi:10.1080/22221751.2020.1826893
  • Hanika A, Larisch B, Steinmann E, et al. Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J Gen Virol. 2005;86(Pt 5):1455–1465. doi:10.1099/vir.0.80788-0
  • Pham HM, Argañaraz ER, Groschel B, et al. Lentiviral vectors interfering with virus-induced CD4 down-modulation potently block human immunodeficiency virus type 1 replication in primary lymphocytes. J Virol. 2004;78(23):13072–13081. doi:10.1128/JVI.78.23.13072-13081.2004
  • Department of Health Technology DHT. SignalP - 6.0 2022. [cited 2022 Jul 27]. organism Eukarya, model mode slow]. Available from: https://services.healthtech.dtu.dk/services/SignalP-6.0/.
  • Teufel F, Almagro Armenteros JJ, Johansen AR, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40(7):1023–1025. doi:10.1038/s41587-021-01156-3
  • Karsten Hiller IfM, Technical university of Braunschweig. PrediSi PREDIction of SIgnal peptides 2003. [2022 Jul 27]. organism group eukaryotic]. Available from: http://www.predisi.de/.
  • Hiller K, Grote A, Scheer M, et al. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004;32(Web Server issue):W375–W379. doi:10.1093/nar/gkh378
  • Roman-Sosa G, Brocchi E, Schirrmeier H, et al. Analysis of the humoral immune response against the envelope glycoprotein Gc of Schmallenberg virus reveals a domain located at the amino terminus targeted by mAbs with neutralizing activity. J Gen Virol. 2016;97(3):571–580. doi:10.1099/jgv.0.000377
  • Aricescu AR, Lu W, Jones EY. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 10):1243–1250. doi:10.1107/S0907444906029799
  • Spearman C. The method of ‘right and wrong cases’ (‘constant stimuli’) without Gauss's formulae. Br J Psychol. 1908;2(3):227–242.
  • Kärber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1931;162(4):480–483. doi:10.1007/BF01863914
  • Defesche JC. Low-density lipoprotein receptor–its structure, function, and mutations. Semin Vasc Med. 2004;4(1):5–11. doi:10.1055/s-2004-822993
  • Strøm TB, Tveten K, Laerdahl JK, et al. Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum. FEBS Open Bio. 2014;4:321–327. doi:10.1016/j.fob.2014.03.007
  • Guo X, Zhang M, Liu X, et al. Attachment, entry, and intracellular trafficking of classical swine fever virus. Viruses. 2023;15(9):1870. doi:10.3390/v15091816
  • Lamothe-Reyes Y, Figueroa M, Sánchez O. Host cell factors involved in classical swine fever virus entry. Vet Res. 2023;54(1):115. doi:10.1186/s13567-023-01238-x
  • Isken O, Postel A, Bruhn B, et al. Crispr/Cas9-mediated knockout of DNAJC14 verifies this chaperone as a pivotal host factor for RNA replication of pestiviruses. J Virol. 2019;93(5):e01714–18. doi:10.1128/JVI.01714-18
  • Zou X, Lin F, Yang Y, et al. Cholesterol biosynthesis modulates CSFV replication. Viruses. 2022;14(7):1450. doi:10.3390/v14071450.
  • National Library of Medicine NCfBI. LDLR low density lipoprotein receptor [Sus scrofa (pig)] 2022 [2023 May 5]. Available from: https://www.ncbi.nlm.nih.gov/gene/396801.
  • Li M, Chen L, Tian S, et al. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 2017;27(5):865–874. doi:10.1101/gr.207456.116
  • Ding Y, Zhu S, Wu C, et al. Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays. Asian-Australas J Anim Sci. 2019;32(7):922–929. doi:10.5713/ajas.18.0510
  • [van] Der Schroeff JG, Havekes L, Emeis JJ, et al. Morphological studies on the binding of low-density lipoproteins and acetylated low-density lipoproteins to the plasma membrane of cultured monocytes. Exp Cell Res. 1983;145(1):95–103. doi:10.1016/S0014-4827(83)80012-3
  • Cuthbert JA, Lipsky PE. Mitogenic stimulation alters the regulation of LDL receptor gene expression in human lymphocytes. J Lipid Res. 1990;31(11):2067–2078. doi:10.1016/S0022-2275(20)42271-0
  • Roque-Cuéllar MC, Sánchez B, García-Lozano JR, et al. Expression of CD81, SR-BI and LDLR in lymphocytes and monocytes from patients with classic and occult hepatitis C virus infection. J Med Virol. 2012;84(11):1727–1736. doi:10.1002/jmv.23345
  • Yamamoto S, Fukuhara T, Ono C, et al. Lipoprotein receptors redundantly participate in entry of hepatitis C virus. PLoS Pathog. 2016;12(5):e1005610. doi:10.1371/journal.ppat.1005610
  • Miao Z, Xie Z, Miao J, et al. Regulated entry of hepatitis C virus into hepatocytes. Viruses. 2017;9(5):100. doi:10.3390/v9050100
  • Soto-Acosta R, Mosso C, Cervantes-Salazar M, et al. The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity. Virology. 2013;442(2):132–147. doi:10.1016/j.virol.2013.04.003
  • Nikolic J, Belot L, Raux H, et al. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat Commun. 2018;9(1):1029. doi:10.1038/s41467-018-03432-4
  • Marlovits TC, Zechmeister T, Gruenberger M, et al. Recombinant soluble low density lipoprotein receptor fragment inhibits minor group rhinovirus infection in vitro. FASEB J. 1998;12(9):695–703. doi:10.1096/fasebj.12.9.695
  • Huang L, Li H, Ye Z, et al. Berbamine inhibits Japanese encephalitis virus (JEV) infection by compromising TPRMLs-mediated endolysosomal trafficking of low-density lipoprotein receptor (LDLR). Emerg Microbes Infect. 2021;10(1):1257–1271. doi:10.1080/22221751.2021.1941276
  • Uppal S, Postnikova O, Villasmil R, et al. Low-density lipoprotein receptor (LDLR) is involved in internalization of lentiviral particles pseudotyped with SARS-CoV-2 spike protein in ocular cells. Int J Mol Sci. 2023;24(14):11860. doi:10.3390/ijms241411860