1,146
Views
0
CrossRef citations to date
0
Altmetric
Emerging seasonal and pandemic influenza infections

Amino acids in the polymerase complex of shorebird-isolated H1N1 influenza virus impact replication and host-virus interactions in mammalian models

, , , , , , ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Article: 2332652 | Received 01 Nov 2023, Accepted 15 Mar 2024, Published online: 14 Apr 2024

References

  • Kim EH, Kim YL, Kim SM, et al. Pathogenic assessment of avian influenza viruses in migratory birds. Emerg Microbes Infect. 2021;10(1):565–577. doi:10.1080/22221751.2021.1899769
  • Kocer ZA, Krauss S, Stallknecht DE, et al. The potential of avian H1N1 influenza A viruses to replicate and cause disease in mammalian models. PLoS One. 2012;7(7):e41609. doi:10.1371/journal.pone.0041609
  • Lv X, Tian J, Li X, et al. H10Nx avian influenza viruses detected in wild birds in China pose potential threat to mammals. One Health. 2023;16:100515. doi:10.1016/j.onehlt.2023.100515
  • Zanin M, Kocer ZA, Poulson RL, et al. Potential for low-pathogenic avian H7 influenza A viruses to replicate and cause disease in a mammalian model. J Virol. 2017;91(3). doi:10.1128/JVI.01934-16
  • Poulson R, Carter D, Beville S, et al. Influenza A viruses in ruddy turnstones (Arenaria interpres); connecting wintering and migratory sites with an ecological hotspot at Delaware Bay. Viruses. 2020;12(11). doi:10.3390/v12111205
  • Kocer ZA, Krauss S, Zanin M, et al. Possible basis for the emergence of H1N1 viruses with pandemic potential from avian hosts. Emerg Microbes Infect. 2015;4(7):e40. doi:10.1038/emi.2015.40
  • Belser JA, Lau EHY, Barclay W, et al. Robustness of the ferret model for influenza risk assessment studies: a cross-laboratory exercise. mBio. 2022;13(4):e0117422. doi:10.1128/mbio.01174-22
  • Zanin M, Wong SS, Barman S, et al. Molecular basis of mammalian transmissibility of avian H1N1 influenza viruses and their pandemic potential. Proc Natl Acad Sci USA. 2017;114(42):11217–11222. doi:10.1073/pnas.1713974114
  • Naffakh N, Tomoiu A, Rameix-Welti MA, et al. Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annu Rev Microbiol. 2008;62:403–424. doi:10.1146/annurev.micro.62.081307.162746
  • Kash JC, Taubenberger JK. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am J Pathol. 2015;185(6):1528–1536. doi:10.1016/j.ajpath.2014.08.030
  • Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol. 1993;67(4):1761–1764. doi:10.1128/jvi.67.4.1761-1764.1993
  • Kim JH, Hatta M, Watanabe S, et al. Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol. 2010;91(Pt 5):1284–1289. doi:10.1099/vir.0.018143-0
  • Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293(5536):1840–1842. doi:10.1126/science.1062882
  • Steel J, Lowen AC, Mubareka S, et al. Transmission of influenza virus in a mammalian host Is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog. 2009;5(1):e1000252. doi:10.1371/journal.ppat.1000252
  • Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA. 2000;97(11):6108–6113. doi:10.1073/pnas.100133697
  • Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27(3):493–497. doi:10.1093/oxfordjournals.aje.a118408
  • Reich S, Guilligay D, Pflug A, et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature. 2014;516(7531):361–366. doi:10.1038/nature14009
  • Wandzik JM, Kouba T, Karuppasamy M, et al. A structure-based model for the complete transcription cycle of influenza polymerase. Cell. 2020;181(4):877–893 e21. doi:10.1016/j.cell.2020.03.061
  • Massin P, van der Werf S, Naffakh N. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol. 2001;75(11):5398–5404. doi:10.1128/JVI.75.11.5398-5404.2001
  • Carrique L, Fan H, Walker AP, et al. Host ANP32A mediates the assembly of the influenza virus replicase. Nature. 2020;587(7835):638–643. doi:10.1038/s41586-020-2927-z
  • Staller E, Sheppard CM, Neasham PJ, et al. Anp32 proteins are essential for influenza virus replication in human cells. J Virol. 2019;93(17). doi:10.1128/JVI.00217-19
  • Tarendeau F, Boudet J, Guilligay D, et al. Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol. 2007;14(3):229–233. doi:10.1038/nsmb1212
  • Gabriel G, Herwig A, Klenk HD. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog. 2008;4(2):e11. doi:10.1371/journal.ppat.0040011
  • Bussey KA, Bousse TL, Desmet EA, et al. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol. 2010;84(9):4395–4406. doi:10.1128/JVI.02642-09
  • Gabriel G, Klingel K, Otte A, et al. Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun. 2011;2:156. doi:10.1038/ncomms1158
  • Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009;5(12):e1000692. doi:10.1371/journal.ppat.1000692
  • Zhang Y, Zhang Q, Gao Y, et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J Virol. 2012;86(18):9666–9674. doi:10.1128/JVI.00958-12
  • Kocer ZA, Fan Y, Huether R, et al. Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses. Sci Rep. 2014;4:7455. doi:10.1038/srep07455
  • Chen GW, Chang SC, Mok CK, et al. Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis. 2006;12(9):1353–1360. doi:10.3201/eid1209.060276
  • Mukaigawa J, Nayak DP. Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol. 1991;65(1):245–253. doi:10.1128/jvi.65.1.245-253.1991
  • Nilsson BE, Te Velthuis AJW, Fodor E. Role of the PB2 627 domain in influenza A virus polymerase function. J Virol. 2017;91(7). doi:10.1128/JVI.02467-16
  • Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol. 1989;63(11):4603–4608. doi:10.1128/jvi.63.11.4603-4608.1989
  • Lin RW, Chen GW, Sung HH, et al. Naturally occurring mutations in PB1 affect influenza A virus replication fidelity, virulence, and adaptability. J Biomed Sci. 2019;26(1):55. doi:10.1186/s12929-019-0547-4
  • Santos LA, Almeida F, Giria M, et al. Adaptive evolution of PB1 from influenza A(H1N1)pdm09 virus towards an enhanced fitness. Virology. 2023;578:1–6. doi:10.1016/j.virol.2022.11.003
  • Forero A, Tisoncik-Go J, Watanabe T, et al. The 1918 influenza virus PB2 protein enhances virulence through the disruption of inflammatory and Wnt-mediated signaling in mice. J Virol. 2015;90(5):2240–2253. doi:10.1128/JVI.02974-15
  • Li H, Bradley KC, Long JS, et al. Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. PLoS Pathog. 2018;14(1):e1006821. doi:10.1371/journal.ppat.1006821
  • Russell AB, Elshina E, Kowalsky JR, et al. Single-cell virus sequencing of influenza infections that trigger innate immunity. J Virol. 2019;93(14). doi:10.1128/JVI.00500-19