1,980
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The African swine fever virus MGF300-4L protein is associated with viral pathogenicity by promoting the autophagic degradation of IKKβ and increasing the stability of IκBα

ORCID Icon, , , , , , , & ORCID Icon show all
Article: 2333381 | Received 11 Dec 2023, Accepted 16 Mar 2024, Published online: 14 Apr 2024

References

  • Dixon LK, Stahl K, Jori F, et al. African swine fever epidemiology and control. Annu Rev Anim Biosci. 2020;8:221–246. doi:10.1146/annurev-animal-021419-083741
  • Reis AL, Rathakrishnan A, Goulding LV, et al. Deletion of the gene for the African swine fever virus BCL-2 family member A179L increases virus uptake and apoptosis but decreases virus spread in macrophages and reduces virulence in pigs. J Virol; 2023;97(10):e0110623. doi:10.1128/jvi.01106-23
  • Zhou X, Li N, Luo Y, et al. Emergence of African swine fever in China, 2018. Transbound Emerg Dis. 2018;65(6):1482–1484. doi:10.1111/tbed.12989
  • Wang T, Luo R, Sun Y, et al. Current efforts towards safe and effective live attenuated vaccines against African swine fever: challenges and prospects. Infect Dis Poverty. 2021;10(1):137. doi:10.1186/s40249-021-00920-6
  • Rathakrishnan A, Reis AL, Petrovan V, et al. A protective multiple gene-deleted African swine fever virus genotype II, Georgia 2007/1, expressing a modified non-haemadsorbing CD2v protein. Emerg Microbes Infect; 2023;12(2):2265661. doi:10.1080/22221751.2023.2265661
  • Forth JH, Forth LF, Blome S, et al. African swine fever whole-genome sequencing—Quantity wanted but quality needed. PLoS Pathog. 2020;16(8):e1008779. doi:10.1371/journal.ppat.1008779
  • Dixon LK, Chapman DA, Netherton CL, et al. African swine fever virus replication and genomics. Virus Res. 2013;173(1):3–14. doi:10.1016/j.virusres.2012.10.020
  • Zsak L, Lu Z, Burrage TG, et al. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J Virol. 2001;75(7):3066–3076. doi:10.1128/JVI.75.7.3066-3076.2001
  • Reis AL, Netherton C, Dixon LK. Unraveling the armor of a killer: evasion of host defenses by African swine fever virus. J Virol. 2017;91(6):e02338–16. doi:10.1128/JVI.02338-16
  • Rathakrishnan A, Connell S, Petrovan V, et al. Differential effect of deleting members of African swine fever virus multigene families 360 and 505 from the genotype II Georgia 2007/1 isolate on virus replication, virulence, and induction of protection. J Virol. 2022;96(6):e0189921. doi:10.1128/jvi.01899-21
  • Zhang K, Yang B, Shen C, et al. MGF360-9L is a major virulence factor associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway. mBio. 2022;13(1):e0233021. doi:10.1128/mbio.02330-21
  • Ding M, Dang W, Liu H, et al. Combinational deletions of MGF360-9L and MGF505-7R attenuated highly virulent African swine fever virus and conferred protection against homologous challenge. J Virol. 2022;96(14):e0032922. doi:10.1128/jvi.00329-22
  • Li J, Song J, Kang L, et al. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathog. 2021; 17(7):e1009733. doi:10.1371/journal.ppat.1009733
  • Wang T, Sun Y, Huang S, et al. Multifaceted immune responses to African swine fever virus: implications for vaccine development. Vet Microbiol. 2020;249:108832. doi:10.1016/j.vetmic.2020.108832
  • Rahman MM, McFadden G. Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol. 2011;9(4):291–306. doi:10.1038/nrmicro2539
  • Casanova JL, Abel L. Mechanisms of viral inflammation and disease in humans. Science. 2021;374(6571):1080–1086. doi:10.1126/science.abj7965
  • Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi:10.1038/s41392-020-00312-6
  • Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–558. doi:10.1038/nri.2017.52
  • Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309–324. doi:10.1038/nri.2017.142
  • Mansur DS, Maluquer de Motes C, Unterholzner L, et al. Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog. 2013;9(2):e1003183. doi:10.1371/journal.ppat.1003183
  • Sadek J, Wuo MG, Rooklin D, et al. Modulation of virus-induced NF-κB signaling by NEMO coiled coil mimics. Nat Commun. 2020;11(1):1786. doi:10.1038/s41467-020-15576-3
  • Neidel S, Ren H, Torres AA, et al. NF-κB activation is a turn on for vaccinia virus phosphoprotein A49 to turn off NF-κB activation. Proc Natl Acad Sci U S A. 2019;116(12):5699–5704. doi:10.1073/pnas.1813504116
  • Albarnaz JD, Ren H, Torres AA, et al. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol. 2022;7(1):154–168. doi:10.1038/s41564-021-01004-9
  • Granja AG, Sánchez EG, Sabina P, et al. African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-θ-mediated p300 transactivation. J Virol. 2009;83(2):969–980. doi:10.1128/JVI.01663-08
  • Zhou P, Dai J, Zhang K, et al. The H240R Protein of African swine fever virus inhibits interleukin 1β production by inhibiting NEMO expression and NLRP3 oligomerization. J Virol. 2022;96(22):e0095422. doi:10.1128/jvi.00954-22
  • Wang T, Luo R, Zhang J, et al. The MGF300-2R protein of African swine fever virus is associated with viral pathogenicity by promoting the autophagic degradation of IKKα and IKKβ through the recruitment of TOLLIP. PLoS Pathog. 2023;19(8):e1011580. doi:10.1371/journal.ppat.1011580
  • Huang L, Liu H, Ye G, et al. Deletion of African swine fever virus (ASFV) H240R gene attenuates the virulence of ASFV by enhancing nlrp3-mediated inflammatory responses. J Virol. 2023;97(2):e0122722. doi:10.1128/jvi.01227-22
  • Choi Y, Bowman JW, Jung JU. Autophagy during viral infection — a double-edged sword. Nat Rev Microbiol. 2018;16(6):341–354. doi:10.1038/s41579-018-0003-6
  • Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24(6):382–400. doi:10.1038/s41576-022-00562-w
  • Kirchner P, Bourdenx M, Madrigal-Matute J, et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2019;17(5):e3000301. doi:10.1371/journal.pbio.3000301
  • Afe AE, Shen ZJ, Guo X, et al. African swine fever virus interaction with host innate immune factors. Viruses. 2023;15(6):1220. doi:10.3390/v15061220
  • Yozawa T, Kutish GF, Afonso CL, et al. Two novel multigene families, 530 and 300, in the terminal variable regions of African swine fever virus genome. Virology. 1994;202(2):997–1002. doi:10.1006/viro.1994.1426
  • Wang T, Wang L, Han Y, et al. Adaptation of African swine fever virus to HEK293T cells. Transbound Emerg Dis. 2021;68(5):2853–2866. doi:10.1111/tbed.14242
  • Luo R, Wang T, Sun M, et al. The 24.5-kb left variable region is not a determinant for African swine fever virus to replicate in primary porcine alveolar macrophages. Viruses. 2022;14(10):2119. doi:10.3390/v14102119
  • Zhang J, Wang B, Gao X, et al. RNF185 regulates proteostasis in Ebolavirus infection by crosstalk between the calnexin cycle, ERAD, and reticulophagy. Nat Commun. 2022;13(1):6007. doi:10.1038/s41467-022-33805-9
  • Zhao D, Liu R, Zhang X, et al. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microbes Infect. 2019;8(1):438–447. doi:10.1080/22221751.2019.1590128
  • Pérez-Núñez D, García-Belmonte R, Riera E, et al. Signal peptide and N-glycosylation of N-terminal-CD2v determine the hemadsorption of African swine fever virus. J Virol. 2023;97(10):e0103023. doi:10.1128/jvi.01030-23
  • de Oliveira DE, Ballon G, Cesarman E. NF-κB signaling modulation by EBV and KSHV. Trends Microbiol. 2010;18(6):248–257. doi:10.1016/j.tim.2010.04.001
  • Brady G, Bowie AG. Innate immune activation of NFκB and its antagonism by poxviruses. Cytokine Growth Factor Rev. 2014;25(5):611–620. doi:10.1016/j.cytogfr.2014.07.004
  • Pickering S, Sumner J, Kerridge C, et al. Differential dysregulation of β-TrCP1 and -2 by HIV-1 Vpu leads to inhibition of canonical and non-canonical NF-κB pathways in infected cells. mBio. 2023;14(4):e0329322. doi:10.1128/mbio.03293-22
  • García-Belmonte R, Pérez-Núñez D, Pittau M, et al. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. J Virol. 2019;93(12):e02298–18. doi:10.1128/JVI.02298-18
  • Granja AG, Sabina P, Salas ML, et al. Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. J Virol. 2006;80(21):10487–10496. doi:10.1128/JVI.00862-06
  • Niu S, Guo Y, Wang X, et al. Innate immune escape and adaptive immune evasion of African swine fever virus: A review. Virology. 2023;587:109878. doi:10.1016/j.virol.2023.109878
  • Riera E, García-Belmonte R, Madrid R, et al. African swine fever virus ubiquitin-conjugating enzyme pI215L inhibits IFN-I signaling pathway through STAT2 degradation. Front Microbiol. 2023;13:1081035. doi:10.3389/fmicb.2022.1081035
  • Sun M, Yu S, Ge H, et al. The A137R protein of African swine fever virus inhibits type I interferon production via the autophagy-mediated lysosomal degradation of TBK1. J Virol. 2022;96(9):e0195721. doi:10.1128/jvi.01957-21
  • Cheng M, Kanyema MM, Sun Y, et al. African swine fever virus L83L negatively regulates the cGAS-STING-mediated IFN-I pathway by recruiting Tollip to promote STING autophagic degradation. J Virol. 2023;97(2):e0192322. doi:10.1128/jvi.01923-22
  • Morelli M, Dennis AF, Patton JT. Putative E3 ubiquitin ligase of human rotavirus inhibits NF-κB activation by using molecular mimicry to target β-TrCP. mBio. 2015;6(1):e02490–14. doi:10.1128/mBio.02490-14
  • Chapman DAG, Tcherepanov V, Upton C, et al. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol. 2008;89:397–408. doi:10.1099/vir.0.83343-0
  • Borca MV, Rai A, Ramirez-Medina E, et al. A Cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain. J Virol. 2021;95(14):e0012321. doi:10.1128/JVI.00123-21
  • Kitamura T, Masujin K, Yamazoe R, et al. A spontaneously occurring African swine fever virus with 11 gene deletions partially protects pigs challenged with the parental strain. Viruses. 2023;15(2):311. doi:10.3390/v15020311
  • Yang K, Huang Q, Wang R, et al. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway. Vet Microbiol. 2021;263:109265. doi:10.1016/j.vetmic.2021.109265
  • Yang K, Xue Y, Niu H, et al. African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production. Vet Res. 2022;53(1):7. doi:10.1186/s13567-022-01025-0
  • O'Donnell V, Holinka LG, Gladue DP, et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol. 2015;89(11):6048–6056. doi:10.1128/JVI.00554-15
  • Zhu G, Ren J, Li D, et al. Combinational deletions of MGF110-9L and MGF505-7R genes from the African swine fever virus inhibit TBK1 degradation by an autophagy activator PIK3C2B to promote type I interferon production. J Virol. 2023;97(5):e0022823. doi:10.1128/jvi.00228-23