729
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of genomic and pathogenicity characteristics of Streptococcus suis ST1 human strains from Guangxi Zhuang Autonomous Region (GX) between 2005 and 2020 in China

, , , , , ORCID Icon, , , , ORCID Icon & show all
Article: 2339946 | Received 19 Nov 2023, Accepted 03 Apr 2024, Published online: 21 Apr 2024

References

  • Segura M. Streptococcus suis research: progress and challenges. Pathogens. 2020;9(9). doi:10.3390/pathogens9090707
  • Goyette-Desjardins G, Auger JP, Xu J, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect. 2014;3(6):e45.
  • Huong VT, Ha N, Huy NT, et al. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg Infect Dis. 2014;20(7):1105–1114. doi:10.3201/eid2007.131594
  • Ye C, Zhu X, Jing H, et al. Streptococcus suis sequence type 7 outbreak, Sichuan, China. Emerg Infect Dis. 2006;12(8):1203–1208. doi:10.3201/eid1708.060232
  • Dong XX, Chao YJ, Zhou Y, et al. The global emergence of a novel Streptococcus suis clade associated with human infections. Embo Mol Med. 2021;13(7):1–11.
  • Wang ML, Du PC, Wang JP, et al. Genomic epidemiology of Streptococcus suis sequence type 7 sporadic infections in the Guangxi Zhuang Autonomous Region of China. Pathogens. 2019;8(4):1–17.
  • Marois C, Bougeard S, Gottschalk M, et al. Multiplex PCR assay for detection of Streptococcus suis species and serotypes 2 and 1/2 in tonsils of live and dead pigs. J Clin Microbiol. 2004;42(7):3169–3175. doi:10.1128/JCM.42.7.3169-3175.2004
  • Ishida S, Tien le HT, Osawa R, et al. Development of an appropriate PCR system for the reclassification of Streptococcus suis. J Microbiol Methods. 2014;107:66–70. doi:10.1016/j.mimet.2014.09.003
  • Wang J, Qi K, Bai X, et al. Characterization of integrative and conjugative elements carrying antibiotic resistance genes of Streptococcus suis isolated in China. Front Microbiol. 2022;13:1074844. doi:10.3389/fmicb.2022.1074844
  • Huang JH, Chen L, Li DW, et al. Emergence of a carrying and multidrug resistant ICE in zoonotic pathogen. Vet Microbiol. 2018;222:109–113. doi:10.1016/j.vetmic.2018.07.008
  • Liang P, Wang M, Gottschalk M, et al. Genomic and pathogenic investigations of Streptococcus suis serotype 7 population derived from a human patient and pigs. Emerg Microbes Infect. 2021;10(1):1960–1974. doi:10.1080/22221751.2021.1988725
  • Han N, Miao JJ, Zhang TT, et al. MDACP: a pathogen genome and metagenome analysis cloud platform. Front Genet. 2020;11:1–5.
  • Sitto F, Battistuzzi FU. Estimating pangenomes with roary. Mol Biol Evol. 2020;37(3):933–939. doi:10.1093/molbev/msz284
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi:10.1093/bioinformatics/btu153
  • Chen C, Zhang W, Zheng H, et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol. 2013;51(8):2582–2591. doi:10.1128/JCM.00535-13
  • Ye C, Zheng H, Zhang J, et al. Clinical, experimental, and genomic differences between intermediately pathogenic, highly pathogenic, and epidemic Streptococcus suis. J Infect Dis. 2009;199(1):97–107. doi:10.1086/594370
  • Holden MT, Hauser H, Sanders M, et al. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One. 2009;4(7):e6072. doi:10.1371/journal.pone.0006072
  • Huang J, Ma J, Shang K, et al. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci. Front Cell Infect Microbiol. 2016;6:118.
  • Li M, Shen X, Yan J, et al. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol. 2011;79(6):1670–1683. doi:10.1111/j.1365-2958.2011.07553.x
  • Liang ZJ, Wu HZ, Bian C, et al. The antimicrobial systems of Streptococcus suis promote niche competition in pig tonsils. Virulence. 2022;13(1):781–793. doi:10.1080/21505594.2022.2069390
  • Oehlmann S, Krieger AK, Gisch N, et al. D-Alanylation of lipoteichoic acids in Streptococcus suis reduces association with leukocytes in porcine blood. Front Microbiol. 2022;13:1–17.
  • Zheng H, Ji S, Liu Z, et al. Eight novel capsular polysaccharide synthesis gene loci identified in nontypeable Streptococcus suis isolates. Appl Environ Microbiol. 2015;81(12):4111–4119. doi:10.1128/AEM.00315-15
  • Ji LY, Chen ZG, Li F, et al. Epidemiological and genomic analyses of human isolates of Streptococcus suis between 2005 and 2021 in Shenzhen, China. Front Microbiol. 2023;14:1–12.
  • Zhou Y, Dong X, Li Z, et al. Predominance of Streptococcus suis ST1 and ST7 in human cases in China, and detection of a novel sequence type, ST658. Virulence. 2017;8(6):1031–1035. doi:10.1080/21505594.2016.1243193
  • Xu J, Fu S, Liu M, et al. The two-component system NisK/NisR contributes to the virulence of Streptococcus suis serotype 2. Microbiol Res. 2014;169(7–8):541–546. doi:10.1016/j.micres.2013.11.002
  • Zhao Y, Liu G, Li S, et al. Role of a type IV-like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. J Infect Dis. 2011;204(2):274–281. doi:10.1093/infdis/jir261
  • Li M, Wang C, Feng Y, et al. Salk/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS One. 2008;3(5):e2080. doi:10.1371/journal.pone.0002080
  • Huang W, Wang M, Hao H, et al. Genomic epidemiological investigation of a Streptococcus suis outbreak in Guangxi, China, 2016. Infect Genet Evol. 2019;68:249–252. doi:10.1016/j.meegid.2018.12.023
  • Zheng X, Zheng H, Lan R, et al. Identification of genes and genomic islands correlated with high pathogenicity in Streptococcus suis using whole genome tiling microarrays. PLoS One. 2011;6(3):e17987. doi:10.1371/journal.pone.0017987
  • Wang J, Liang P, Sun H, et al. Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains. Virulence. 2022;13(1):1455–1470. doi:10.1080/21505594.2022.2116160
  • Norrby-Teglund A, Pauksens K, Norgren M, et al. Correlation between serum TNF alpha and IL6 levels and severity of group A streptococcal infections. Scand J Infect Dis. 1995;27(2):125–130. doi:10.3109/00365549509018991
  • Faulkner L, Cooper A, Fantino C, et al. The mechanism of superantigen-mediated toxic shock: not a simple Th1 cytokine storm. J Immunol. 2005;175(10):6870–6877. doi:10.4049/jimmunol.175.10.6870
  • Chabot-Roy G, Willson P, Segura M, et al. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb Pathog. 2006;41(1):21–32. doi:10.1016/j.micpath.2006.04.001
  • Smith HE, Damman M, van der Velde J, et al. Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect Immun. 1999;67(4):1750–1756. doi:10.1128/IAI.67.4.1750-1756.1999
  • Xu ZM, Chen B, Zhang Q, et al. Streptococcus suis 2 transcriptional regulator TstS stimulates cytokine production and bacteremia to promote streptococcal toxic shock-like syndrome. Front Microbiol. 2018;9:1–12.
  • Jiang XW, Yang YK, Zhou JJ, et al. Roles of the putative type IV-like secretion system key component VirD4 and PrsA in pathogenesis of Streptococcus suis type 2. Front Cell Infect Mi. 2016;6:1–13.