624
Views
0
CrossRef citations to date
0
Altmetric
Emerging seasonal and pandemic influenza infections

Mammalian adaptation risk in HPAI H5N8: a comprehensive model bridging experimental data with mathematical insights

, , , , , , , , , , & show all
Article: 2339949 | Received 20 Nov 2023, Accepted 03 Apr 2024, Published online: 16 Apr 2024

References

  • Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 influenza in cats. Science. 2004;306(5694):241.
  • Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol. 2005;3(8):591–600.
  • Pappas C, Aguilar PV, Basler CF, et al. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc Natl Acad Sci USA. 2008;105(8):3064–3069.
  • Yen HL, Aldridge JR, Boon AC, et al. Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci USA. 2009;106(1):286–291.
  • Mehle A, Doudna JA. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci USA. 2009;106(50):21312–6.
  • Gabriel G, Dauber B, Wolff T, et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA. 2005;102(51):18590–5.
  • Velthuis AJ T, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–493.
  • Mänz B, Schwemmle M, Brunotte L. Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol. 2013;87(13):7200–7209.
  • Mänz B, de Graaf M, Mögling R, et al. Multiple natural substitutions in avian influenza A virus PB2 facilitate efficient replication in human cells. J Virol. 2016;90(13):5928–5938.
  • Arai Y, Kawashita N, Daidoji T, et al. Novel polymerase gene mutations for human adaptation in clinical isolates of avian H5N1 influenza viruses. PLoS Pathog. 2016;12(4):e1005583.
  • Liu WJ, Li J, Zou R, et al. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci USA. 2020;117(38):23807–23814.
  • Zhang H, Li X, Guo J, et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol. 2014;95(4):779–786.
  • Cheng K, Yu Z, Chai H, et al. PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology. 2014;468:207–213.
  • Sediri H, Schwalm F, Gabriel G, et al. Adaptive mutation PB2 D701N promotes nuclear import of influenza vRNPs in mammalian cells. Eur J Cell Biol. 2015;94:368–374.
  • Zhou B, Pearce MB, Li Y, et al. Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS One. 2013;8(6):e67616.
  • Wang C, Lee HH, Yang ZF, et al. PB2-Q591K mutation determines the pathogenicity of avian H9N2 influenza viruses for mammalian species. PLoS One. 2016;11(9):e0162163.
  • Li Q, Wang X, Sun Z, et al. Adaptive mutations in PB2 gene contribute to the high virulence of a natural reassortant H5N2 avian influenza virus in mice. Virus Res. 2015;210:255–263.
  • Wu H, Peng X, Peng X, et al. Multiple amino acid substitutions involved in the adaptation of avian-origin influenza A (H10N7) virus in mice. Arch Virol. 2016;161:977–980.
  • Zhou B, Li Y, Halpin R, et al. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. J Virol. 2011;85(1):357–365.
  • Choi WS, Baek YH, Kwon JJ, et al. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse. Sci Rep. 2017;7(1):40667.
  • Zhao Y, Yu Z, Liu L, et al. Adaptive amino acid substitutions enhance the virulence of a novel human H7N9 influenza virus in mice. Vet Microbiol. 2016;187:8–14.
  • Ping J, Keleta L, Forbes NE, et al. Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS One. 2011;6(6):e21740.
  • Eng CL, Tong JC, Tan TW. Distinct host tropism protein signatures to identify possible zoonotic influenza A viruses. PLoS One. 2016;11(2):e0150173.
  • Eng CL, Tong JC, Tan TW. Predicting zoonotic risk of influenza A viruses from host tropism protein signature using random forest. Int J Mol Sci. 2017;18(6):1135.
  • Qiang X, Kou Z, Fang G, et al. Scoring amino acid mutations to predict avian-to-human transmission of avian influenza viruses. Molecules. 2018;23(7):1584.
  • Smith AM. Host-pathogen kinetics during influenza infection and coinfection: insights from predictive modeling. Immunol Rev. 2018;285(1):97–112.
  • Wang J, Kou Z, Duan M, et al. Using amino acid factor scores to predict avian-to-human transmission of avian influenza viruses: a machine learning study. Protein Pept Lett. 2013;20(10):1115–1121.
  • Smith AM, Adler FR, McAuley JL, et al. Effect of 1918 PB1-F2 expression on influenza A virus infection kinetics. PLoS Comput Biol. 2011;7(2):e1001081.
  • Heldt FS, Frensing T, Pflugmacher A, et al. Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals. PLoS Comput Biol. 2013;9(11):e1003372.
  • Mitchell H, Levin D, Forrest S, et al. Higher level of replication efficiency of 2009 (H1N1) pandemic influenza virus than those of seasonal and avian strains: kinetics from epithelial cell culture and computational modeling. J Virol. 2011;85(2):1125–1135.
  • Beauchemin C, Samuel J, Tuszynski J. A simple cellular automaton model for influenza A viral infections. J Theor Biol. 2005;232(2):223–234.
  • Baccam P, Beauchemin C, Macken CA, et al. Kinetics of influenza A virus infection in humans. J Virol. 2006;80(15):7590–7599.
  • Beauchemin CA, McSharry JJ, Drusano GL, et al. Modeling amantadine treatment of influenza A virus in vitro. J Theor Biol. 2008;254(2):439–451.
  • Handel A, Longini Jr IM, Antia R. Towards a quantitative understanding of the within-host dynamics of influenza A infections. J R Soc Interface. 2010;7(42):35–47.
  • Holder BP, Beauchemin CA. Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture. BMC Public Health. 2011;11:1–5.
  • Möhler L, Flockerzi D, Sann H, et al. Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol Bioeng. 2005;90(1):46–58.
  • Saenz RA, Quinlivan M, Elton D, et al. Dynamics of influenza virus infection and pathology. J Virol. 2010;84(8):3974–3983.
  • Hoffmann E, Stech J, Guan Y, et al. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001 Dec;146:2275–2289.
  • Kawakami E, Watanabe T, Fujii K, et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods. 2011;173(1):1–6.
  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.
  • Taft AS, Ozawa M, Fitch A, et al. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun. 2015;6(1):7491.
  • Wu H, Peng X, Lu R, et al. Virulence of an H5N8 highly pathogenic avian influenza is enhanced by the amino acid substitutions PB2 E627K and HA A149V. Infect Genet Evol. 2017;54:347–354.
  • Song MS, Pascua PN, Lee JH, et al. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol. 2009;83(23):12325–12335.
  • Czudai-Matwich V, Otte A, Matrosovich M, et al. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol. 2014;88(16):8735–8742.
  • Yang F, Zhang X, Liu F, et al. Rapid emergence of a PB2 D701N substitution during adaptation of an H9N2 avian influenza virus in mice. Arch Virol. 2022;167(11):2299–2303.
  • Arai Y, Kawashita N, Ibrahim MS, et al. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathog. 2019;15(7):e1007919.
  • Song W, Wang P, Mok BW, et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Commun. 2014;5(1):5509.
  • Vester D, Lagoda A, Hoffmann D, et al. Real-time RT-qPCR assay for the analysis of human influenza A virus transcription and replication dynamics. J Virol Methods. 2010;168(1–2):63–71.
  • Luo GU, Bergmann M, Garcia-Sastre A, et al. Mechanism of attenuation of a chimeric influenza A/B transfectant virus. J Virol. 1992;66(8):4679–4685.
  • Robb NC, Smith M, Vreede FT, et al. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol. 2009;90(6):1398–1407.
  • Karlas A, Machuy N, Shin Y, et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010;463(7282):818–822.
  • Kawakami E, Watanabe T, Fujii K, et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods. 2011;173(1):1–6.
  • Chang N, Zhang C, Mei X, et al. Novel reassortment 2.3. 4.4 b H5N8 highly pathogenic avian influenza viruses circulating in Xinjiang, China. Prev Vet Med. 2022;199:105564.
  • Gomaa M, Moatasim Y, El Taweel A, et al. We are underestimating, again, the true burden of H5N1 in humans. BMJ Global Health. 2023;8:8.