973
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rodent control strategies and Lassa virus: some unexpected effects in Guinea, West Africa

, , ORCID Icon, , , , , , & ORCID Icon show all
Article: 2341141 | Received 01 Feb 2024, Accepted 04 Apr 2024, Published online: 20 Apr 2024

References

  • McCallum H. Models for managing wildlife disease. Parasitology. 2016;143:805–820. doi:10.1017/S0031182015000980
  • Prentice JC, Fox NJ, Hutchings MR, et al. When to kill a cull: factors affecting the success of culling wildlife for disease control. J R Soc Interface. 2019;16; doi:10.1098/rsif.2018.0901
  • Wobeser GA. Investigation and management of disease in wild animals. Springer US; 1994; doi:10.1007/978-1-4757-5609-8.
  • Davis SA, Calvet E, Leirs H. Fluctuating rodent populations and risk to humans from Rodent-Borne Zoonoses. Vector Borne Zoonotic Dis. 2005;5:305–314. doi:10.1089/vbz.2005.5.305
  • Lloyd-Smith JO, Cross PC, Briggs CJ, et al. Should we expect population thresholds for wildlife disease? Trends Ecol Evol. 2005;20:511–519. doi:10.1016/j.tree.2005.07.004
  • Brown KP, Sherley GH. Turning the tide: the eradication of invasive species. Proceedings of the International Conference On Eradication of Island Invasives. Switserland (IUCN); 2002.
  • Bradshaw CJA, Mcmahon CR, Miller PS, et al. Novel coupling of individual-based epidemiological and demographic models predicts realistic dynamics of tuberculosis in alien buffalo. J Appl Ecol. 2012;49:268–277. doi:10.1111/j.1365-2664.2011.02081.x
  • Ham C, Donnelly CA, Astley KL, et al. Effect of culling on individual badger Meles meles behaviour: potential implications for bovine tuberculosis transmission. J Appl Ecol. 2019;56:2390–2399. doi:10.1111/1365-2664.13512
  • Viana M, Benavides JA, Broos A, et al. Effects of culling vampire bats on the spatial spread and spillover of rabies virus. Sci Adv. 2023;9:eadd7437. doi:10.1126/sciadv.add7437
  • Guinat C, Vergne T, Jurado-Diaz C, et al. Effectiveness and practicality of control strategies for African swine fever: what do we really know? Vet Rec. 2017;180:97. doi:10.1136/vr.103992
  • Plowright RK, Parrish CR, McCallum H, et al. Pathways to zoonotic spillover. Nat Rev Microbiol. 2017;15:502–510. doi:10.1038/nrmicro.2017.45
  • Wacharapluesadee S, Tan CW, Maneeorn P, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun. 2021;12:972. doi:10.1038/s41467-021-21240-1
  • Frame JD, Baldwin JM, Gocke DJ, et al. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am J Trop Med Hyg. 1970;19:670–676. doi:10.4269/ajtmh.1970.19.670
  • McCormick JB, Webb PA, Krebs JW, et al. A prospective study of the epidemiology and ecology of lassa fever. J Infect Dis. 1987;155:137–144. doi:10.1093/infdis/155.1.137
  • Basinski AJ, Fichet-Calvet E, Sjodin AR, et al. Bridging the gap: using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput Biol. 2021;17. doi:10.1371/journal.pcbi.1008811
  • Klitting R, Kafetzopoulou LE, Thiery W, et al. Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades. Nat Commun. 2022;13; doi:10.1038/s41467-022-33112-3
  • Wozniak DM, Riesle-Sbarbaro SA, Kirchoff N, et al. Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir–Mastomys natalensis. Emerg Microbes Infect. 2021;10:2313–2325. doi:10.1080/22221751.2021.2008773
  • Monath T, Newhouse VF, Kemp G, et al. Lassa virus isolation from Mastomys Natalensis Rodents during an epidemic in Sierra-Leone. Science. 1974;19:263–265.
  • Olayemi A, Fichet-Calvet E. Systematics, ecology, and host switching: attributes affecting emergence of the Lassa virus in rodents across western Africa. Viruses. 2020;12; doi:10.3390/v12030312
  • Mariën J, Kourouma F, Magassouba N, et al. Movement patterns of small rodents in Lassa fever-endemic villages in Guinea. Ecohealth. 2018;15:348–359. doi:10.1007/s10393-018-1331-8
  • Mariën J, Lo Iacono G, Rieger T, et al. Households as hotspots of Lassa fever? Assessing the spatial distribution of Lassa virus-infected rodents in rural villages of Guinea. Emerg Microbes Infect. 2020;9:1055–1064. doi:10.1080/22221751.2020.1766381
  • Stephenson E, Larson E, Dominik JW. Effect of environmental factors on aerosol-induced Lassa virus infection. J Med Virol. 1984;14:295–303. doi:10.1002/jmv.1890140402
  • Bonwitt J, Sáez AM, Lamin J, et al. At home with mastomys and rattus: human-rodent interactions and potential for primary transmission of lassa virus in domestic spaces. Am J Trop Med Hyg. 2017;96:935–943.
  • Lo Iacono G, Cunningham AA, Fichet-Calvet E, et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl Trop Dis. 2015;9. doi:10.1371/journal.pntd.0003398
  • McCormick JB. Lassa fever. Emergence. Berlin Heidelberg: Elsevier; 1999.
  • Sulis G, Peebles A, Basta NE. Lassa fever vaccine candidates: A scoping review of vaccine clinical trials. Trop Med Int Health. 2023;28:420–431. doi:10.1111/tmi.13876
  • Bonwitt J, Kelly AH, Ansumana R, et al. Rat-atouille: a mixed method study to characterize rodent hunting and consumption in the context of Lassa fever. Ecohealth. 2016;13:234–247. doi:10.1007/s10393-016-1098-8
  • Mariën J, Borremans B, Verhaeren C, et al. Density dependence and persistence of Morogoro arenavirus transmission in a fluctuating population of its reservoir host. J Anim Ecol. 2020;89:506–518. doi:10.1111/1365-2656.13107
  • Mariën J, Borremans B, Kourouma F, et al. Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling. Emerg Microbes Infect. 2019;8:640–649. doi:10.1080/22221751.2019.1605846
  • MariSaez A, Haidara C, Camara M, et al. Rodent control to fight Lassa fever: evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl Trop Dis. 2018;12. doi:10.1371/journal.pntd.0006829
  • Douno M, Asampong E, Magassouba N, et al. Hunting and consumption of rodents by children in the lassa fever endemic area of faranah, Guinea. PLoS Negl Trop Dis. 2021;15. doi:10.1371/journal.pntd.0009212
  • Fichet-Calvet E, Lecompte E, Koivogui L, et al. Reproductive characteristics of Mastomys natalensis and Lassa virus prevalence in Guinea, West Africa. Vector Borne Zoonotic Dis 2008; 8: 41–48. doi:10.1089/vbz.2007.0118
  • Fourel I, Damin-Pernik M, Benoit E, et al. Core-shell LC–MS/MS method for quantification of second generation anticoagulant rodenticides diastereoisomers in rat liver in relationship with exposure of wild rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1041:120–132. doi:10.1016/j.jchromb.2016.12.028
  • Frankova M, Stejskal V, Aulicky R. Efficacy of rodenticide baits with decreased concentrations of brodifacoum: validation of the impact of the new EU anticoagulant regulation. Sci Rep. 2019;9. doi:10.1038/s41598-019-53299-8
  • Fichet-Calvet E, Lecompte E, Koivogui L, et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector-Borne and Zoonotic Diseases. 2007;7:119–128. doi:10.1089/vbz.2006.0520
  • Olschläger S, Günther S. Rapid and specific detection of Lassa virus by reverse transcription-PCR coupled with oligonucleotide array hybridization. J Clin Microbiol. 2012;50:2496–2499. doi:10.1128/JCM.00998-12
  • Vieth S, Torda AE, Asper M, et al. Sequence analysis of L RNA of Lassa virus. Virology. 2004;318:153–168. doi:10.1016/j.virol.2003.09.009
  • Wulff H, Lange J. Indirect immunofluorescence for the diagnosis of Lassa fever infection. Bull World Health Organ. 1975;52:429–436.
  • Morris P. A review of mammalian age determination methods. Mamm Rev. 1972;2:69–104. doi:10.1111/j.1365-2907.1972.tb00160.x
  • Leirs H, Verhagen R, Verheyen W. The basis of reproductive seasonality in Mastomys rats (Rodentia: Muridae) in Tanzania. J Trop Ecol. 1994;10:55–66. doi:10.1017/S0266467400007719
  • Mariën J, Borremans B, Gryseels S, et al. Arenavirus dynamics in experimentally and naturally infected rodents. Ecohealth. 2017;14:463–473. doi:10.1007/s10393-017-1256-7
  • Wood S. Smoothing parameter and model selection for general smooth models (with discussion). J Am Stat Assoc. 2017;111(1548):1575.
  • Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.
  • Olayemi A, Obadare A, Oyeyiola A, et al. Small mammal diversity and dynamics within Nigeria, with emphasis on reservoirs of the lassa virus. Syst Biodivers. 2017;16:118–127. doi:10.1080/14772000.2017.1358220
  • Salmon TP, Marsh RE. Age as a factor in rodent susceptibility to rodenticides- a review. ASTM STP 680. Am Soc Test Mater. 1979:84–101.
  • Brunton CFA, Macdonald DW, Buckle AP. Behavioural resistance towards poison baits in brown rats, Rattus norvegicus. Appl Anim Behav Sci. 1993;38:159–174. doi:10.1016/0168-1591(93)90063-U
  • Peel AJ, Pulliam JRC, Luis AD, et al. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proc Biol Sci. 2014;281:1786–1795.
  • Choisy M, Rohani P. Harvesting can increase severity of wildlife disease epidemics. Proceedings of the Royal Society B: Biological Sciences. 2006;273:2025–2034. doi:10.1098/rspb.2006.3554
  • Streicker DG, Recuenco S, Valderrama W, et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proceedings of the Royal Society B: Biological Sciences. 2012;279:3384–3392. doi:10.1098/rspb.2012.0538
  • Lee MJ, Byers KA, Donovan CM, et al. Effects of culling on Leptospira interrogans carriage by rats. Emerg Infect Dis. 2018;24:356–360. doi:10.3201/eid2402.171371
  • Donga TK, Bosma L, Gawa N, et al. Rodents in agriculture and public health in Malawi: farmers’ knowledge, attitudes, and practices. Frontiers in Agronomy. 2022;4; doi:10.3389/fagro.2022.936908
  • Belmain SR, Meyer AN, Penicela L, et al. Population management of rodent pests through intensive trapping inside rural households in Mozambique. International Conference on Urban Pests. 2002;1:1–12.
  • Eisen RJ, Atiku LA, Boegler KA, et al. An evaluation of removal trapping to control rodents inside homes in a Plague-Endemic Region of Rural Northwestern Uganda. Vector-Borne and Zoonotic Diseases. 2018;18:458–463. doi:10.1089/vbz.2018.2276
  • Elmeros M, Bossi R, Christensen TK, et al. Exposure of non-target small mammals to anticoagulant rodenticide during chemical rodent control operations. Environ Sci Pollut Res. 2019;26:6133–6140. doi:10.1007/s11356-018-04064-3
  • Brakes CR, Smith RH. Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. J Appl Ecol. 2005;42:118–128. doi:10.1111/j.1365-2664.2005.00997.x
  • Imakando CI, Fernández-Grandon GM, Singleton GR, et al. Impact of fertility versus mortality control on the demographics of Mastomys natalensis in maize fields. Integr Zool. 2022;17:1028–1040. doi:10.1111/1749-4877.12580
  • Hone J. Rate of increase and fertility control. J Appl Ecol. 1992;29:695–698. doi:10.2307/2404478
  • Singleton GR, Leirs H, Hinds La, et al. Ecologically-based management of rodent pests-re-evaluating our approach to an old problem. Canberra: ACIAR Monograph Series; 1999.
  • Stenseth NC, Leirs H, Skonhoft A, et al. Mice, rats, and people : the bio-economics of agricultural rodent pests In a nutshell. Front Ecol Environ. 2003;7:367–375. doi:10.1890/1540-9295(2003)001[0367:MRAPTB]2.0.CO;2
  • Krijger IM, Gort G, Belmain SR, et al. Efficacy of management and monitoring methods to prevent post-harvest losses caused by rodents. Animals. 2020;10:1–19. doi:10.3390/ani10091612