945
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficacy of genotype-matched vaccine against re-emerging genotype V Japanese encephalitis virus

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Article: 2343910 | Received 01 Jan 2024, Accepted 11 Apr 2024, Published online: 29 Apr 2024

References

  • Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5(6):796–812. doi:10.1038/s41564-020-0714-0
  • Vannice KS, Hills SL, Schwartz LM, et al. The future of Japanese encephalitis vaccination: expert recommendations for achieving and maintaining optimal JE control. NPJ Vaccines. 2021;6(1):82. doi:10.1038/s41541-021-00338-z
  • Solomon T, Ni H, Beasley DW, et al. Origin and evolution of Japanese encephalitis virus in Southeast Asia. J Virol. 2003;77(5):3091–3098. doi:10.1128/JVI.77.5.3091-3098.2003
  • Okuno T, Okada T, Kondo A, et al. Immunotyping of different strains of Japanese encephalitis virus by antibody-absorption, haemagglutination-inhibition and complement-fixation tests. Bull World Health Organ. 1968;38(4):547–563.
  • Zheng Y, Li M, Wang H, et al. Japanese encephalitis and Japanese encephalitis virus in mainland China. Rev Med Virol. 2012;22(5):301–322. doi:10.1002/rmv.1710
  • Pan X-L, Liu H, Wang H-Y, et al. Emergence of genotype I of Japanese encephalitis virus as the dominant genotype in Asia. J Virol. 2011;85(19):9847–9853. doi:10.1128/JVI.00825-11
  • Hasegawa H, Yoshida M, Fujita S, et al. Comparison of structural proteins among antigenically different Japanese encephalitis virus strains. Vaccine. 1994;12(9):841–844. doi:10.1016/0264-410X(94)90294-1
  • Woo JH, Jeong YE, Jo JE, et al. Genetic characterization of Japanese encephalitis virus genotype 5 isolated from patient, South Korea, 2015. Emerg Infect Dis. 2020;26(5):1002–1006. doi:10.3201/eid2605.190977
  • Takhampunya R, Kim HC, Tippayachai B, et al. Emergence of Japanese encephalitis virus genotype V in the Republic of Korea. Virol J. 2011;8:449. doi:10.1186/1743-422X-8-449
  • Kim H, Cha GW, Jeong YE, et al. Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea. PLoS One. 2015;10(2):e0116547.
  • Sanborn MA, Wuertz KM, Kim HC, et al. Metagenomic analysis reveals Culex mosquito virome diversity and Japanese encephalitis genotype V in the Republic of Korea. Mol Ecol. 2021;30(21):5470–5487. doi:10.1111/mec.16133
  • Seo MG, Lee HS, Yang SC, et al. National monitoring of mosquito populations and molecular analysis of Flavivirus in the Republic of Korea in 2020. Microorganisms. 2021;9(10):2085. doi:10.3390/microorganisms9102085
  • Lee A-R, Song JM, Seo S-U. Emerging Japanese encephalitis virus genotype V in Republic of Korea. J Microbiol Biotechnol. 2022;32(8):955–959. doi:10.4014/jmb.2207.07002
  • Yun S-I, Lee Y-M. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother. 2014;10(2):263–279. doi:10.4161/hv.26902
  • Erra EO, Askling HH, Yoksan S, et al. Cross-protective capacity of Japanese encephalitis (JE) vaccines against circulating heterologous JE virus genotypes. Clin Infect Dis. 2013;56(2):267–270. doi:10.1093/cid/cis883
  • Honjo S, Masuda M, Ishikawa T. Effects of the Japanese encephalitis virus genotype V-derived sub-viral particles on the immunogenicity of the vaccine characterized by a novel virus-like particle-based Assay. Vaccines (Basel). 2019;7(3):81. doi:10.3390/vaccines7030081
  • Cao L, Fu S, Gao X, et al. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese encephalitis virus. PLoS Negl Trop Dis. 2016;10(5):e0004686.
  • Tajima S, Taniguchi S, Nakayama E, et al. Immunogenicity and protective ability of genotype I-based recombinant Japanese Encephalitis Virus (JEV) with attenuation mutations in E protein against genotype V JEV. Vaccines (Basel). 2021;9(10):1077. doi:10.3390/vaccines9101077
  • Chávez JH, Silva JR, Amarilla AA, et al. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals. 2010;38(6):613–618. doi:10.1016/j.biologicals.2010.07.004
  • Perera R, Khaliq M, Kuhn RJ. Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res. 2008;80(1):11–22. doi:10.1016/j.antiviral.2008.05.004
  • Li S-H, Li X-F, Zhao H, et al. Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunol Lett. 2011;138(2):156–160. doi:10.1016/j.imlet.2011.04.003
  • Tripathi NK, Shrivastava A, Biswal KC, et al. Development of a pilot-scale production process and characterization of a recombinant Japanese encephalitis virus envelope domain III protein expressed in Escherichia coli. Appl Microbiol Biotechnol. 2012;95:1179–1189. doi:10.1007/s00253-012-4100-6
  • Yao M, Ren X, Yin M, et al. Nanoparticle vaccine based on the envelope protein domain III of Japanese encephalitis virus elicits robust protective immune responses in mice. Nanomedicine. 2023;18(1):5–18. doi:10.2217/nnm-2022-0298
  • Deng W-L, Guan C-Y, Liu K, et al. Fine mapping of a linear epitope on EDIII of Japanese encephalitis virus using a novel neutralizing monoclonal antibody. Virus Res. 2014;179:133–139. doi:10.1016/j.virusres.2013.10.022
  • Ahn J, Yu JE, Kim H, et al. Ab5-type toxin as a pentameric scaffold in recombinant vaccines against the Japanese encephalitis virus. Toxins (Basel). 2023;15(7):425. doi:10.3390/toxins15070425
  • Uchil PD, Satchidanandam V. Phylogenetic analysis of Japanese encephalitis virus: envelope gene based analysis reveals a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent. Am J Trop Med Hyg. 2001;65(3):242–251. doi:10.4269/ajtmh.2001.65.242
  • Choi SI, Ryu K, Seong BL. RNA-mediated chaperone type for de novo protein folding. RNA Biol. 2009;6(1):21–24. doi:10.4161/rna.6.1.7441
  • Hwang BJ, Jang Y, Kwon SB, et al. RNA-assisted self-assembly of monomeric antigens into virus-like particles as a recombinant vaccine platform. Biomaterials. 2021;269:120650. doi:10.1016/j.biomaterials.2021.120650
  • Lee J, Son A, Kim P, et al. RNA-dependent chaperone (chaperna) as an engineered pro-region for the folding of recombinant microbial transglutaminase. Biotechnol Bioeng. 2019;116(3):490–502. doi:10.1002/bit.26879
  • Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2022. doi:10.1101/2021.10.04.463034
  • Mirdita M, Schütze K, Moriwaki Y, et al. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–682. doi:10.1038/s41592-022-01488-1
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2
  • Lukash T, Turkivska H, Negrutskii B, et al. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases. Int J Biochem Cell Biol. 2004;36(7):1341–1347. doi:10.1016/j.biocel.2003.11.009
  • Choi SI, Han KS, Kim CW, et al. Protein solubility and folding enhancement by interaction with RNA. PLoS One. 2008;3(7):e2677. doi:10.1371/journal.pone.0002677
  • Hu T, Wu Z, Wu S, et al. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J. 2021;18(1):1–12. doi:10.1186/s12985-020-01472-1
  • Zhang W, Xu C, Nie K, et al. Genotype 5 Japanese encephalitis virus—old genotype, new threat. Zoonoses. 2022;2(23):0016.
  • Merritt EA, Zhang Z, Pickens JC, et al. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for Cholera toxin and E. coli heat-labile enterotoxin. J Am Chem Soc. 2002;124(30):8818–8824. doi:10.1021/ja0202560
  • Worstell NC, Krishnan P, Weatherston JD, et al. Binding cooperativity matters: a GM1-like ganglioside-cholera toxin B subunit binding study using a nanocube-based lipid bilayer array. PLoS One. 2016;11(4):e0153265. doi:10.1371/journal.pone.0153265
  • Wang X, Li SH, Zhu L, et al. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nat Commun. 2017;8(1):14. doi:10.1038/s41467-017-00024-6
  • Xu L, Ma Z, Li Y, et al. Antibody dependent enhancement: unavoidable problems in vaccine development. Adv Immunol. 2021;151:99–133.
  • Shukla R, Ramasamy V, Shanmugam RK, et al. Antibody-dependent enhancement: a challenge for developing a safe dengue vaccine. Front cell infect microbiol. 2020;10:597. doi:10.3389/fcimb.2020.572681
  • Dejnirattisai W, Jumnainsong A, Onsirisakul N, et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science. 2010;328(5979):745–748. doi:10.1126/science.1185181
  • Saito Y, Moi ML, Takeshita N, et al. Japanese encephalitis vaccine-facilitated dengue virus infection-enhancement antibody in adults. BMC Infect Dis. 2016;16(1):1–11.
  • Stratmann T. Cholera toxin subunit B as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccines (Basel). 2015;3(3):579–596. doi:10.3390/vaccines3030579
  • Chen D, Duan Z, Zhou W, et al. Japanese encephalitis virus–primed CD8+ T cells prevent antibody-dependent enhancement of Zika virus pathogenesis. J Exp Med. 2020;217(9):e20192152. doi:10.1084/jem.20192152
  • Zhang W, Xu Y, Zhao F, et al. The pre-existing cellular immunity to Japanese encephalitis virus heterotypically protects mice from Zika virus infection. Sci Bull. 2020;65(5):402–409. doi:10.1016/j.scib.2019.11.006