358
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Leaderless foot-and-mouth disease virus serotype O did not cause clinical disease and failed to establish a persistent infection in cattle

, , , , , , , & show all
Article: 2348526 | Received 22 Jan 2024, Accepted 23 Apr 2024, Published online: 16 May 2024

References

  • Grubman MJ, Baxt B. Foot-and-mouth disease. Clin Microbiol Rev. 2004;17:465–493. doi:10.1128/CMR.17.2.465-493.2004
  • Barnett PV, Geale DW, Clarke G, et al. A review of OIE country status recovery using vaccinate-to-live versus vaccinate-to-die foot-and-mouth disease response policies I: benefits of higher potency vaccines and associated NSP DIVA test systems in post-outbreak surveillance. Transbound Emerg Dis. 2015;62:367–387. doi:10.1111/tbed.12166
  • Thompson D, Muriel P, Russell D, et al. Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001. Rev Sci Tech. 2002;21:675–687. doi:10.20506/rst.21.3.1353
  • Stenfeldt C, Eschbaumer M, Rekant SI, et al. The foot-and-mouth disease carrier state divergence in cattle. J Virol. 2016;90:6344–6364. doi:10.1128/JVI.00388-16
  • Sutmoller P, McVicar JW, Cottral GE. The epizootiological importance of foot-and-mouth disease carriers. I. Experimentally produced foot-and-mouth disease carriers in susceptible and immune cattle. Arch Gesamte Virusforsch. 1968;23:227–235. doi:10.1007/BF01241895
  • Ilott MC, Salt JS, Gaskell RM, et al. Dexamethasone inhibits virus production and the secretory IgA response in oesophageal–pharyngeal fluid in cattle persistently infected with foot-and-mouth disease virus. Epidemiol Infect. 1997;118:181–187. doi:10.1017/S0950268896007376
  • Cox SJ, Voyce C, Parida S, et al. Protection against direct-contact challenge following emergency FMD vaccination of cattle and the effect on virus excretion from the oropharynx. Vaccine. 2005;23:1106–1113. doi:10.1016/j.vaccine.2004.08.034
  • Stenfeldt C, Arzt J. The carrier conundrum: a review of recent advances and persistent gaps regarding the carrier state of foot-and-mouth disease virus. Pathogens. 2020;9. doi:10.3390/pathogens9030167
  • Burrows R. Studies on the carrier state of cattle exposed to foot-and-mouth disease virus. J Hyg (Lond. 1966;64:81–90. doi:10.1017/S0022172400040365
  • Pacheco JM, Smoliga GR, O'Donnell V, et al. Persistent foot-and-mouth disease virus infection in the nasopharynx of cattle: tissue-specific distribution and local cytokine expression. PLoS One. 2015;10:e0125698.
  • Arzt J, Belsham GJ, Lohse L, et al. Transmission of foot-and-mouth disease from persistently infected carrier cattle to naive cattle via transfer of oropharyngeal fluid. mSphere. 2018;3. doi:10.1128/mSphere.00365-18
  • Jolles A, Gorsich E, Gubbins S, et al. Endemic persistence of a highly contagious pathogen: foot-and-mouth disease in its wildlife host. Science. 2021;374:104–109. doi:10.1126/science.abd2475
  • Dawe PS, Sorensen K, Ferris NP, et al. Experimental transmission of foot-and-mouth disease virus from carrier African buffalo (Syncerus caffer) to cattle in Zimbabwe. Vet Rec. 1994;134:211–215. doi:10.1136/vr.134.9.211
  • Gao Y, Sun S-Q, Guo H-C. Biological function of foot-and-mouth disease virus non-structural proteins and non-coding elements. Virol J. 2016;13. doi:10.1186/s12985-016-0561-z
  • Medina M, Domingo E, Brangwyn JK, et al. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993;194:355–359. doi:10.1006/viro.1993.1267
  • Belsham GJ. Influence of the Leader protein coding region of foot-and-mouth disease virus on virus replication. J Gen Virol. 2013;94:1486–1495. doi:10.1099/vir.0.052126-0
  • Strebel K, Beck E. A second protease of foot-and-mouth disease virus. J Virol. 1986;58:893–899. doi:10.1128/jvi.58.3.893-899.1986
  • Devaney MA, Vakharia VN, Lloyd RE, et al. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol. 1988;62:4407–4409. doi:10.1128/jvi.62.11.4407-4409.1988
  • Wang D, Fang L, Li P, et al. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J Virol. 2011;85:3758–3766. doi:10.1128/JVI.02589-10
  • Wang D, Fang L, Luo R, et al. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels. Biochem Biophys Res Commun. 2010;399:72–78. doi:10.1016/j.bbrc.2010.07.044
  • Arzt J, Pacheco JM, Smoliga GR, et al. Foot-and-mouth disease virus virulence in cattle is co-determined by viral replication dynamics and route of infection. Virology. 2014;452–453:12–22. doi:10.1016/j.virol.2014.01.001
  • Piccone ME, Rieder E, Mason PW, et al. The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J Virol. 1995;69:5376–5382. doi:10.1128/jvi.69.9.5376-5382.1995
  • Brown CC, Piccone ME, Mason PW, et al. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J Virol. 1996;70:5638–5641. doi:10.1128/jvi.70.8.5638-5641.1996
  • Mason PW, Piccone ME, Mckenna TS, et al. Evaluation of a live-attenuated foot-and-mouth disease virus as a vaccine candidate. Virology. 1997;227:96–102. doi:10.1006/viro.1996.8309
  • Uddowla S, Hollister J, Pacheco JM, et al. A safe foot-and-mouth disease vaccine platform with two negative markers for differentiating infected from vaccinated animals. J Virol. 2012;86:11675–11685. doi:10.1128/JVI.01254-12
  • Piccone ME, Pacheco JM, Pauszek SJ, et al. The region between the two polyprotein initiation codons of foot-and-mouth disease virus is critical for virulence in cattle. Virology. 2010;396:152–159. doi:10.1016/j.virol.2009.10.020
  • Zhang M, Hill JE, Alexander TW, et al. The nasal viromes of cattle on arrival at western Canadian feedlots and their relationship to development of bovine respiratory disease. Transbound Emerg Dis. 2021;68:2209–2218. doi:10.1111/tbed.13873
  • Simon-Loriere E, Holmes EC. Why do RNA viruses recombine? Nat Rev Microbiol. 2011;9:617–626. doi:10.1038/nrmicro2614
  • Heath L, van der Walt E, Varsani A, et al. Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol. 2006;80:11827–11832. doi:10.1128/JVI.01100-06
  • Uddowla S, Pacheco JM, Larson C, et al. Characterization of a chimeric foot-and-mouth disease virus bearing a bovine rhinitis B virus leader proteinase. Virology. 2013;447:172–180. doi:10.1016/j.virol.2013.08.035
  • Forth LF, Höper D, Beer M, et al. High-resolution composition analysis of an inactivated polyvalent foot-and-mouth disease vaccine. Pathogens. 2020;9. doi:10.3390/pathogens9010063
  • Ellard FM, Drew J, Blakemore WE, et al. Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol. 1999;80(Pt 8):1911–1918. doi:10.1099/0022-1317-80-8-1911
  • Bond SR, Naus CC. RF-Cloning.org: an online tool for the design of restriction-free cloning projects. Nucleic Acids Res. 2012;40:W209–W213. doi:10.1093/nar/gks396
  • Dill V, Beer M, Hoffmann B. Simple, quick and cost-efficient: a universal RT-PCR and sequencing strategy for genomic characterisation of foot-and-mouth disease viruses. J Virol Methods. 2017;246:58–64. doi:10.1016/j.jviromet.2017.04.007
  • Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol. 1999;73:251–259. doi:10.1128/JVI.73.1.251-259.1999
  • Keil GM, Klopfleisch C, Giesow K, et al. Novel vectors for simultaneous high-level dual protein expression in vertebrate and insect cells by recombinant baculoviruses. J Virol Methods. 2009;160:132–137. doi:10.1016/j.jviromet.2009.05.001
  • Larocco M, Krug PW, Kramer E, et al. A continuous bovine kidney cell line constitutively expressing bovine αvβ6 integrin has increased susceptibility to foot-and-mouth disease virus. J Clin Microbiol. 2013;51:1714–1720. doi:10.1128/JCM.03370-12
  • de Castro MP. Comportamento do virus aftoso em cultura de células: susceptibilidade da linhagem de células suinas IB-RS-2. Archiv Instit Biológ Sâo Paulo. 1964;31:63–78.
  • Brehm KE, Ferris NP, Lenk M, et al. Highly sensitive fetal goat tongue cell line for detection and isolation of foot-and-mouth disease virus. J Clin Microbiol. 2009;47:3156–3160. doi:10.1128/JCM.00510-09
  • Pacheco JM, Stenfeldt C, Rodriguez LL, et al. Infection dynamics of foot-and-mouth disease virus in cattle following intranasopharyngeal inoculation or contact exposure. J Comp Pathol. 2016;155:314–325. doi:10.1016/j.jcpa.2016.08.005
  • Hoffmann B, Depner K, Schirrmeier H, et al. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J Virol Methods. 2006;136:200–209. doi:10.1016/j.jviromet.2006.05.020
  • Callahan JD, Brown F, Osorio FA, et al. Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. J Am Vet Med Assoc. 2002;220:1636–1642. doi:10.2460/javma.2002.220.1636
  • Xie Y-L, Lv D-H, Wen X-H, et al. Development of a real-time quantitative RT-PCR assay for detection of bovine rhinitis B virus. Front Vet Sci. 2021;8:680707. doi:10.3389/fvets.2021.680707
  • Sutmoller and Gaggero. (1965). FMD carriers_Probang.
  • Sutmoller P, Cottral GE. Improved techniques for the detection of foot-and-mouth disease virus in carrier cattle. Arch Gesamte Virusforsch. 1967;21:170–177. doi:10.1007/BF01241441
  • Mayr KB A. The Chloroform resistance test in the isolation and characterization of enteroviruses. Zentral Veter. 1961;8:908–922.
  • Wilson EB. Probable inference, the law of succession, and statistical inference. J Am Stat Assoc. 1927;22:209–212. doi:10.1080/01621459.1927.10502953
  • Bonbon E, Funes GM, Hammami S, et al. WOAH terrestrial manual 2022: Chapter 3.1.8. Foot and Mouth Disease (Infection with Foot and Mouth Disease Virus) [cited 2024 Mar 22].
  • Hardham JM, Krug P, Pacheco JM, et al. Novel foot-and-mouth disease vaccine platform: formulations for safe and DIVA-compatible FMD vaccines with improved potency. Front Vet Sci. 2020;7:554305. doi:10.3389/fvets.2020.554305
  • Kraatz F, Wernike K, Hechinger S, et al. Deletion mutants of Schmallenberg virus are avirulent and protect from virus challenge. J Virol. 2015;89:1825–1837. doi:10.1128/JVI.02729-14
  • Holinka-Patterson LG, Fish IH, Bertram MR, et al. Genome of bovine viral diarrhea virus (BVDV) contaminating a continuous LFBK-αVβ6 cell line. Microbiol Resour Announc. 2022;11:e0116721. doi:10.1128/mra.01167-21
  • Schweizer M, Peterhans E. Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J Virol. 2001;75:4692–4698. doi:10.1128/JVI.75.10.4692-4698.2001
  • Moonen P, Jacobs L, Crienen A, et al. Detection of carriers of foot-and-mouth disease virus among vaccinated cattle. Vet Microbiol. 2004;103:151–160. doi:10.1016/j.vetmic.2004.07.005
  • Stenfeldt C, Heegaard PMH, Stockmarr A, et al. Analysis of the acute phase responses of serum amyloid a, haptoglobin and type 1 interferon in cattle experimentally infected with foot-and-mouth disease virus serotype O. Vet Res. 2011;42(1):66. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123197/
  • Horsington J, Zhang Z. Consistent change in the B-C loop of VP2 observed in foot-and-mouth disease virus from persistently infected cattle: implications for association with persistence. Virus Res. 2007;125:114–118. doi:10.1016/j.virusres.2006.12.008
  • Malirat V, de Mello PA, Tiraboschi B, et al. Genetic variation of foot-and-mouth disease virus during persistent infection in cattle. Virus Res. 1994;34:31–48. doi:10.1016/0168-1702(94)90117-1
  • Juleff N, Windsor M, Reid E, et al. Foot-and-mouth disease virus persists in the light zone of germinal centres. PLoS One. 2008;3:e3434. doi:10.1371/journal.pone.0003434
  • Nickel R, Schummer A, Seiferle E. Lehrbuch der Anatomie der Haustiere. Band III.: Kreislaufsystem, Haut und Hautorgane. 4th edn. Berlin/Hamburg: Paul Parey Vlg; 1976.
  • Stenfeldt C, Hartwig EJ, Smoliga GR, et al. Contact challenge of cattle with foot-and-mouth disease virus validates the role of the nasopharyngeal epithelium as the site of primary and persistent infection. mSphere. 2018;3. doi:10.1128/mSphere.00493-18
  • Stenfeldt C, Eschbaumer M, Smoliga GR, et al. Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses. Sci Rep. 2017;7:17800. doi:10.1038/s41598-017-18112-4
  • Murphy ML P, Forsyth MA, Belsham GJ, et al. Localization of foot-and-mouth disease virus RNA by in situ hybridization within bovine tissues. Virus Res. 1999;62:67–76. doi:10.1016/S0168-1702(99)00050-7
  • Alexandersen S, Zhang Z, Donaldson AI. Aspects of the persistence of foot-and-mouth disease virus in animals—the carrier problem. Microbes Infect. 2002;4:1099–1110. doi:10.1016/S1286-4579(02)01634-9
  • Zhang ZD, Kitching RP. The localization of persistent foot and mouth disease virus in the epithelial cells of the soft palate and pharynx. J Comp Pathol. 2001;124:89–94. doi:10.1053/jcpa.2000.0431
  • Kajitani N, Satsuka A, Kawate A, et al. Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front Microbiol. 2012;3:152. doi:10.3389/fmicb.2012.00152