730
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Streptococcus suis serotype 4: a population with the potential pathogenicity in humans and pigs

, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2352435 | Received 10 Jan 2024, Accepted 02 May 2024, Published online: 15 May 2024

References

  • Goyette-Desjardins G, Auger JP, Xu J, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect. 2014 Jun;3(6):e45. doi: 10.1038/emi.2014.45
  • Segura M, Fittipaldi N, Calzas C, et al. Critical Streptococcus suis virulence factors: are they all really critical? Trends Microbiol. 2017 Jul;25(7):585–599. doi:10.1016/j.tim.2017.02.005
  • Gottschalk M, Xu J, Calzas C, et al. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol. 2010 Mar;5(3):371–391. doi:10.2217/fmb.10.2
  • van Samkar A, Brouwer MC, Schultsz C, et al. Streptococcus suis meningitis: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2015;9(10):e0004191. doi:10.1371/journal.pntd.0004191
  • Wertheim HF, Nguyen HN, Taylor W, et al. Streptococcus suis, an important cause of adult bacterial meningitis in northern Vietnam. PLoS One. 2009 Jun 22;4(6):e5973. doi:10.1371/journal.pone.0005973
  • Segura M, Aragon V, Brockmeier SL, et al. Update on Streptococcus suis research and prevention in the era of antimicrobial restriction: 4th international workshop on S. suis. Pathogens. 2020 May 14;9(5). doi:10.3390/pathogens9050374
  • Okura M, Osaki M, Nomoto R, et al. Current taxonomical situation of Streptococcus suis. Pathogens. 2016 Jun 24;5(3). doi:10.3390/pathogens5030045
  • Bojarska A, Janas K, Pejsak Z, et al. Diversity of serotypes and new cps loci variants among Streptococcus suis isolates from pigs in Poland and Belarus. Vet Microbiol. 2020 Jan;240:108534. doi:10.1016/j.vetmic.2019.108534
  • Huang J, Liu X, Chen H, et al. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transbound Emerg Dis. 2019 Mar;66(2):995–1003. doi:10.1111/tbed.13123
  • Pan Z, Ma J, Dong W, et al. Novel variant serotype of streptococcus suis isolated from piglets with meningitis. Appl Environ Microbiol. 2015 Feb;81(3):976–985. doi:10.1128/AEM.02962-14
  • Zheng H, Qiu X, Roy D, et al. Genotyping and investigating capsular polysaccharide synthesis gene loci of non-serotypeable Streptococcus suis isolated from diseased pigs in Canada. Vet Res. 2017 Feb 20;48(1):10. doi:10.1186/s13567-017-0417-6
  • Qiu X, Bai X, Lan R, et al. Novel capsular polysaccharide loci and new diagnostic tools for high-throughput capsular gene typing in Streptococcus suis. Appl Environ Microbiol. 2016 Dec 15;82(24):7102–7112. doi:10.1128/AEM.02102-16
  • Zheng H, Ji S, Liu Z, et al. Eight novel capsular polysaccharide synthesis gene loci identified in nontypeable Streptococcus suis isolates. Appl Environ Microbiol. 2015 Jun 15;81(12):4111–4119. doi:10.1128/AEM.00315-15
  • Liang P, Wang M, Gottschalk M, et al. Genomic and pathogenic investigations of Streptococcus suis serotype 7 population derived from a human patient and pigs. Emerg Microbes Infect. 2021 Dec;10(1):1960–1974. doi:10.1080/22221751.2021.1988725
  • Hatrongjit R, Fittipaldi N, Jenjaroenpun P, et al. Genomic comparison of two Streptococcus suis serotype 1 strains recovered from porcine and human disease cases. Sci Rep. 2023 Apr 3;13(1):5380. doi:10.1038/s41598-023-27709-x
  • Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis. 1988 Jan-Feb;10(1):131–137. doi:10.1093/clinids/10.1.131
  • Kerdsin A, Akeda Y, Takeuchi D, et al. Genotypic diversity of Streptococcus suis strains isolated from humans in Thailand. Eur J Clin Microbiol Infect Dis. 2018 May;37(5):917–925. doi:10.1007/s10096-018-3208-8
  • Gottschalk M, Lacouture S, Bonifait L, et al. Characterization of Streptococcus suis isolates recovered between 2008 and 2011 from diseased pigs in Quebec, Canada. Vet Microbiol. 2013 Mar 23;162(2-4):819–825. doi:10.1016/j.vetmic.2012.10.028
  • Hadjirin NF, Miller EL, Murray GGR, et al. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biol. 2021 Sep 7;19(1):191. doi:10.1186/s12915-021-01094-1
  • Prufer TL, Rohde J, Verspohl J, et al. Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996 and 2016. PLoS One. 2019;14(1):e0210801. doi:10.1371/journal.pone.0210801
  • Werinder A, Aspan A, Backhans A, et al. Streptococcus suis in Swedish grower pigs: occurrence, serotypes, and antimicrobial susceptibility. Acta Vet Scand. 2020 Jun 24;62(1):36. doi:10.1186/s13028-020-00533-3
  • Murray GGR, Hossain A, Miller EL, et al. The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs. Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2307773120. doi:10.1073/pnas.2307773120
  • Chatellier S, Harel J, Zhang Y, et al. Phylogenetic diversity of Streptococcus suis strains of various serotypes as revealed by 16S rRNA gene sequence comparison. Int J Syst Bacteriol. 1998 Apr;48(Pt 2):581–589. doi:10.1099/00207713-48-2-581
  • Tien LHT, Nishibori T, Nishitani Y, et al. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22, 26, and 33 based on DNA-DNA homology and sodA and recN phylogenies. Vet Microbiol. 2013 Mar 23;162(2–4):842–849. doi:10.1016/j.vetmic.2012.11.001
  • Liu Z, Zheng H, Gottschalk M, et al. Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis. PLoS One. 2013;8(8):e72070. doi:10.1371/journal.pone.0072070
  • Hatrongjit R, Boueroy P, Jenjaroenpun P, et al. Genomic characterization and virulence of Streptococcus suis serotype 4 clonal complex 94 recovered from human and swine samples. PLoS One. 2023;18(7):e0288840. doi:10.1371/journal.pone.0288840
  • Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi:10.12688/wellcomeopenres.14826.1
  • Chen C, Zhang W, Zheng H, et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol. 2013 Aug;51(8):2582–2591. doi:10.1128/JCM.00535-13
  • Francisco AP, Bugalho M, Ramirez M, et al. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics. 2009 May 18;10:152. doi:10.1186/1471-2105-10-152
  • Xie J, Chen Y, Cai G, et al. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023 Jul 5;51(W1):W587–W592. doi:10.1093/nar/gkad383
  • Segura M, Calzas C, Grenier D, et al. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett. 2016 Nov;590(21):3772–3799. doi:10.1002/1873-3468.12364
  • Tram G, Jennings MP, Blackall PJ, et al. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv Microb Physiol. 2021;78:217–257. doi:10.1016/bs.ampbs.2020.12.002
  • Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020 Dec 1;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016 Jul 8;44(W1):W16–W21. doi:10.1093/nar/gkw387
  • Huang J, Ma J, Shang K, et al. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci. Front Cell Infect Microbiol. 2016;6:118. doi: 10.3389/fcimb.2016.00118
  • Wang M, Goh YX, Tai C, et al. VRprofile2: detection of antibiotic resistance-associated mobilome in bacterial pathogens. Nucleic Acids Res. 2022 Jul 5;50(W1):W768–W773. doi:10.1093/nar/gkac321
  • Li X, Xie Y, Liu M, et al. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018 Jul 2;46(W1):W229–W234. doi:10.1093/nar/gky352
  • Overbeek R, Olson R, Pusch GD, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14. doi: 10.1093/nar/gkt1226
  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011 Apr 1;27(7):1009–1010. doi:10.1093/bioinformatics/btr039
  • Liu Z, Xu Q, Liang P, et al. The characteristics of population structure and antimicrobial resistance of Streptococcus suis serotype 8, a non-negligible pathotype. Transbound Emerg Dis. 2022 Sep;69(5):e2495–e2505. doi: 10.1111/tbed.14592
  • Wang X, Sun J, Bian C, et al. The population structure, antimicrobial resistance, and pathogenicity of Streptococcus suis cps31. Vet Microbiol. 2021 Aug;259:109149. doi:10.1016/j.vetmic.2021.109149
  • Wu Z, Wang W, Tang M, et al. Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105 K genomic island. Gene. 2014 Feb 10;535(2):156–164. doi:10.1016/j.gene.2014.04.041
  • Wu Z, Zhang W, Lu C. Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microb Pathog. 2008 Sep;45(3):159–166. doi:10.1016/j.micpath.2008.04.009
  • Pan Z, He P, Zhang Y, et al. SssP1, a Fimbria-like component of Streptococcus suis, binds to the vimentin of host cells and contributes to bacterial meningitis. PLoS Pathog. 2022 Jul;18(7):e1010710. doi:10.1371/journal.ppat.1010710
  • Zhang Y, Lu P, Pan Z, et al. Sssp1, a Streptococcus suis Fimbria-like protein transported by the SecY2/A2 system, contributes to bacterial virulence. Appl Environ Microbiol. 2018 Sep 15;84(18). doi: 10.1128/AEM.01385-18
  • Lalonde M, Segura M, Lacouture S, et al. Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology (Reading). 2000 Aug;146(Pt 8):1913–1921. doi:10.1099/00221287-146-8-1913
  • Kerdsin A, Hatrongjit R, Gottschalk M, et al. Emergence of Streptococcus suis serotype 9 infection in humans. J Microbiol Immunol Infect. 2017 Aug;50(4):545–546. doi:10.1016/j.jmii.2015.06.011
  • Zheng H, Du P, Qiu X, et al. Genomic comparisons of Streptococcus suis serotype 9 strains recovered from diseased pigs in Spain and Canada. Vet Res. 2018 Jan 9;49(1):1. doi:10.1186/s13567-017-0498-2
  • Oh SI, Jeon AB, Jung BY, et al. Capsular serotypes, virulence-associated genes and antimicrobial susceptibility of Streptococcus suis isolates from pigs in Korea. J Vet Med Sci. 2017 Apr 20;79(4):780–787. doi:10.1292/jvms.16-0514
  • Gottschalk M, Canada LS. Distribution of Streptococcus suis (from 2012 to 2014) and Actinobacillus pleuropneumoniae (from 2011 to 2014) serotypes isolated from diseased pigs. Can Vet J. 2015 Oct;56(10):1093–1094.
  • Roodsant TJ, Van Der Putten BCL, Tamminga SM, et al. Identification of Streptococcus suis putative zoonotic virulence factors: a systematic review and genomic meta-analysis. Virulence. 2021 Dec;12(1):2787–2797. doi:10.1080/21505594.2021.1985760
  • Callejo R, Zheng H, Du P, et al. Streptococcus suis serotype 2 strains isolated in Argentina (South America) are different from those recovered in North America and present a higher risk for humans. JMM Case Rep. 2016 Oct;3(5):e005066. doi:10.1099/jmmcr.0.005066
  • Wang M, Du P, Wang J, et al. Genomic epidemiology of Streptococcus suis sequence type 7 sporadic infections in the Guangxi Zhuang autonomous Region of China. Pathogens. 2019 Oct 12;8(4):187. doi:10.3390/pathogens8040187
  • Haenni M, Lupo A, Madec JY. Antimicrobial resistance in Streptococcus spp. Microbiol Spectr. 2018 Mar;6(2). doi:10.1128/spectrum.00315-22
  • Palmieri C, Varaldo PE, Facinelli B. Streptococcus suis, an emerging drug-resistant animal and human pathogen. Front Microbiol. 2011;2:235. doi:10.3389/fmicb.2011.00235
  • Arnold BJ, Huang IT, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022 Apr;20(4):206–218. doi:10.1038/s41579-021-00650-4
  • Huang J, Dai X, Wu Z, et al. Conjugative transfer of streptococcal prophages harboring antibiotic resistance and virulence genes. ISME J. 2023 Sep;17(9):1467–1481. doi:10.1038/s41396-023-01463-4
  • Baquero F, Martinez JL, FL V, et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin Microbiol Rev. 2021 Dec 15;34(4):e0005019. doi:10.1128/CMR.00050-19
  • Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018 Oct;31(4). doi:10.1128/CMR.00088-17
  • Libante V, Nombre Y, Coluzzi C, et al. Chromosomal conjugative and mobilizable elements in Streptococcus suis: major actors in the spreading of antimicrobial resistance and bacteriocin synthesis genes. Pathogens. 2019 Dec 25;9(1). doi:10.3390/pathogens9010022