422
Views
0
CrossRef citations to date
0
Altmetric
Ebola

ZMapp reduces diffusion of Ebola viral particles in fresh human cervicovaginal mucus

, , , , , , , , & show all
Article: 2352520 | Received 20 Dec 2023, Accepted 02 May 2024, Published online: 16 May 2024

References

  • Lefebvre A, Fiet C, Belpois-Duchamp C, et al. Case fatality rates of Ebola virus diseases: a meta-analysis of World Health Organization data. Med Mal Infect. 2014;44:412–416. doi:10.1016/j.medmal.2014.08.005
  • Rodriguez LL, De Roo A, Guimard Y, et al. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis. 1999;179(Suppl. 1):S170–S176. doi:10.1086/514291
  • Sissoko D, Duraffour S, Kerber R, et al. Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study. Lancet Glob Health. 2017;5:e80–e88. doi:10.1016/S2214-109X(16)30243-1
  • Subissi L, Keita M, Mesfin S, et al. Ebola virus transmission caused by persistently infected survivors of the 2014–2016 outbreak in West Africa. J Infect Dis. 2018;218:S287–S291. doi:10.1093/infdis/jiy280
  • Fischer WA, Brown J, Wohl DA, et al. Ebola virus ribonucleic acid detection in semen more than two years after resolution of acute Ebola virus infection. Open Forum Infect Dis. 2017;4:ofx155.
  • Mate SE, Kugelman JR, Nyenswah TG, et al. Molecular evidence of sexual transmission of Ebola virus. N Engl J Med. 2015;373:2448–2454. doi:10.1056/NEJMoa1509773
  • Boon S D, Marston BJ, Nyenswah TG, et al. Ebola virus infection associated with transmission from survivors. Emerging Infect Dis. 2019;25:249–255. doi:10.3201/eid2502.181011
  • Vetter P, Fischer WA, Schibler M, et al. Ebola virus shedding and transmission: review of current evidence. J Infect Dis. 2016;214:S177–S184. doi:10.1093/infdis/jiw254
  • Liu WJ, Sesay FR, Coursier A, et al. Comprehensive clinical and laboratory follow-up of a female patient with Ebola virus disease: Sierra Leone Ebola virus persistence study. Open Forum Infect Dis. 2019;6:ofz068.
  • Tompkins K, Brown J, Tozay S, et al. The impact of semen testing for Ebola virus RNA on sexual behavior of male Ebola survivors in Liberia. PLoS Negl Trop Dis. 2020;14:e0008556. doi:10.1371/journal.pntd.0008556
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61:75–85. doi:10.1016/j.addr.2008.09.008
  • Schaefer A, Lai SK. Innate and adaptive barrier properties of airway mucus. In: Hickey AJ, Mansour HM, editors. Inhalation aerosols: physical and biological basis for therapy. 3rd ed. New York (NY): CRC Press; p. 257–274.
  • Newby J, Schiller JL, Wessler T, et al. A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors. Nat Commun. 2017;8, 833.
  • Wang YY, Kannan A, Nunn KL, et al. Igg in cervicovaginal mucus traps HSV and prevents vaginal herpes infections. Mucosal Immunol. 2014;7:1036–1044. doi:10.1038/mi.2013.120
  • Yang B, Schaefer A, Wang Y-Y, et al. Zmapp reinforces the airway mucosal barrier against Ebola virus. J Infect Dis. 2018;218:901–910. doi:10.1093/infdis/jiy230
  • Schroeder HA, Nunn KL, Schaefer A, et al. Herpes simplex virus-binding IgG traps HSV in human cervicovaginal mucus across the menstrual cycle and diverse vaginal microbial composition. Mucosal Immunol. 2018;11:1477–1486. doi:10.1038/s41385-018-0054-z
  • Lai SK, Hida K, Shukair S, et al. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J Virol. 2009;83:11196–11200. doi:10.1128/JVI.01899-08
  • Newby JM, Schaefer AM, Lee PT, et al. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proc Natl Acad Sci USA. 2018;115:9026–9031. doi:10.1073/pnas.1804420115
  • Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4:132r, a52. doi:10.1126/scitranslmed.3003605
  • Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4680–4687. doi:10.1073/pnas.1002611107
  • Fadrosh DW, Ma B, Gajer P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2:6.
  • Lai SK, O’Hanlon DE, Harrold S, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA. 2007;104:1482–1487. doi:10.1073/pnas.0608611104
  • Lai SK, Suk JS, Pace A, et al. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials. 2011;32:6285–6290. doi:10.1016/j.biomaterials.2011.05.008
  • Schuster BS, Suk JS, Woodworth GF, et al. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013;34:3439–3446. doi:10.1016/j.biomaterials.2013.01.064
  • Wang Y-Y, Schroeder HA, Nunn KL, et al. Diffusion of immunoglobulin G in shed vaginal epithelial cells and in cell-free regions of human cervicovaginal mucus. PLoS One. 2016;11:e0158338.
  • Nunn KL, Wang Y-Y, Harit D, et al. Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota. MBio. 2015;6:e1008236.
  • Watts DH, Fazzari M, Minkoff H, et al. Effects of bacterial vaginosis and other genital infections on the natural history of human papillomavirus infection in HIV-1-infected and high-risk HIV-1-uninfected women. J Infect Dis. 2005;191:1129–1139. doi:10.1086/427777
  • Allsworth JE, Lewis VA, Peipert JF. Viral sexually transmitted infections and bacterial vaginosis: 2001–2004 national health and nutrition examination survey data. Sex Transm Dis. 2008;35:791–796. doi:10.1097/OLQ.0b013e3181788301
  • Borgdorff H, Gautam R, Armstrong SD, et al. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. Mucosal Immunol. 2016;9:621–633. doi:10.1038/mi.2015.86
  • Brotman RM, Klebanoff MA, Nansel TR, et al. Bacterial vaginosis assessed by gram stain and diminished colonization resistance to incident gonococcal, chlamydial, and trichomonal genital infection. J Infect Dis. 2010;202:1907–1915. doi:10.1086/657320
  • Chappell CA, Rohan LC, Moncla BJ, et al. The effects of reproductive hormones on the physical properties of cervicovaginal fluid. Am J Obstet Gynecol. 2014;211(226):e1–e7.
  • Wira CR, Fahey JV, Rodriguez-Garcia M, et al. Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. Am J Reprod Immunol. 2014;72:236–258. doi:10.1111/aji.12252
  • Aksoy M, Guven S, Tosun I, et al. The effect of ethinyl estradiol and drospirenone-containing oral contraceptives upon mucoprotein content of cervical mucus. Eur J Obstet Gynecol Reprod Biol. 2012;164:40–43. doi:10.1016/j.ejogrb.2012.05.002
  • Birtch RL, Olatunbosun OA, Pierson RA. Ovarian follicular dynamics during conventional vs. continuous oral contraceptive use. Contraception. 2006;73:235–243. doi:10.1016/j.contraception.2005.09.009
  • Han L, Taub R, Jensen JT. Cervical mucus and contraception: what we know and what we don’t. Contraception. 2017;96:310–321. doi:10.1016/j.contraception.2017.07.168
  • Escaffre O, Juelich TL, Freiberg AN. Polyphenylene carboxymethylene (PPCM) in vitro antiviral efficacy against Ebola virus in the context of a sexually transmitted infection. Antiviral Res. 2019;170:104567.
  • Escaffre O, Popov V, Hager E, et al. Characterization of an air-liquid interface primary human vaginal epithelium to study Ebola virus infection and testing of antivirals. Antiviral Res. 2023;211:105551.
  • 2020 Democratic Republic of the Congo, Equateur Province | Democratic Republic of Congo | Outbreaks | Ebola (Ebola Virus Disease) | CDC.
  • Schaefer A, Yang B, Schroeder HA, et al. Broadly neutralizing antibodies consistently trap HIV-1 in fresh cervicovaginal mucus from select individuals. Acta Biomater. 2023;169:387–397. doi:10.1016/j.actbio.2023.07.031
  • McSweeney MD, Stewart I, Richardson Z, et al. Stable nebulization and muco-trapping properties of regdanvimab/IN-006 support its development as a potent, dose-saving inhaled therapy for COVID-19. Bioeng Transl Med. 2022;8:e10391.
  • Wang Y-Y, Harit D, Subramani DB, et al. Influenza-binding antibodies immobilise influenza viruses in fresh human airway mucus. Eur Respir J. 2017;49:1601709.
  • Mkhize NN, Durgiah R, Ashley V, et al. Broadly neutralizing antibody specificities detected in the genital tract of HIV-1 infected women. AIDS. 2016;30:1005–1014. doi:10.1097/QAD.0000000000001038
  • Zhu P, Liu J, Bess J, et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature. 2006;441:847–852. doi:10.1038/nature04817
  • Grünewald K, Desai P, Winkler DC, et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396–1398. doi:10.1126/science.1090284
  • Beniac DR, Melito PL, Devarennes SL, et al. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One. 2012;7:e29608. doi:10.1371/journal.pone.0029608
  • Lai SK, Wang Y-Y, Hida K, et al. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci USA. 2010;107:598–603. doi:10.1073/pnas.0911748107
  • Nguyen PV, Kafka JK, Ferreira VH, et al. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell Mol Immunol. 2014;11:410–427. doi:10.1038/cmi.2014.41