52
Views
8
CrossRef citations to date
0
Altmetric
Articles

Graphene quantum dots modified Ag3PO4 for facile synthesis and the enhanced photocatalytic performance

, , , , , , & show all
Pages 255-269 | Received 03 Feb 2018, Accepted 26 Mar 2018, Published online: 25 Apr 2018

References

  • A. Kudo, Y. Miseki. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38, 253–278.
  • T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.-P. Jolivet. Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C, 2011, 115, 5657–5666.
  • Z. Zhao, Y. Sun, F. Dong. Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015, 7, 15–37.
  • R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293, 269–271.
  • R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev., 2007, 11, 401–425.
  • J. Low, B. Cheng, J. Yu. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci., 2017, 392, 658–686.
  • Y. Jin, D. Jiang, D. Li, M. Chen. Construction of ultrafine TiO2 nanoparticle and SnNb2O6 nanosheet 0D/2D heterojunctions with abundant interfaces and significantly improved photocatalytic activity. Catal. Sci. Technol., 2017, 7, 2308–2317.
  • D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang, M. Wu. Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng., 2015, 3, 2405–2413.
  • S. Habas, P. Yang, T. Mokari. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc., 2008, 130, 3294–3295.
  • D. You, B. Pan, F. Jiang, Y. Zhou, W. Su. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity. Appl. Surf. Sci., 2016, 363, 154–160.
  • M. Yan, Y. Wu, Y. Yan, X. Yan, F. Zhu, Y. Hua, W. Shi. Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes. ACS Sustain. Chem. Eng., 2016, 4, 757–766.
  • R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun., 2013, 4, 1432. Nat. Commun. 2013 4
  • X. Zhu, J. Liu, Z. Zhao, J. Yan, Y. Xu, Y. Song, H. Ji, H. Xu, H. Li. Hydrothermal synthesis of mpg-C3N4 and Bi2WO6 nest-like structure nanohybrids with enhanced visible light photocatalytic activities. RSC Adv., 2017, 7, 38682–38690.
  • J. H. Jhaveri, Z. Murthy. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 2016, 379, 137–154.
  • S. J. Hong, S. Lee, J. S. Jang, J. S. Lee. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci., 2011, 4, 1781–1787.
  • M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B, 2006, 110, 20211–20216.
  • D. Noureldine, D. H. Anjum, K. Takanabe. Flux-assisted synthesis of SnNb2O6 for tuning photocatalytic properties. Phys. Chem. Chem. Phys., 2014, 16, 10762–10769.
  • Z. Lei, J. Wang, L. Wang, X. Yang, G. Xu, L. Tang. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. J. Hazard. Mater., 2016, 312, 298–306.
  • Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R. L. Withers. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater., 2010, 9, 559–564.
  • S. Huang, Y. Xu, M. Xie, Q. Liu, H. Xu, Y. Zhao, M. He, H. Li. A Z-scheme magnetic recyclable Ag/AgBr@CoFe2O4 photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination. RSC Adv., 2017, 7, 30845–30854.
  • Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, Y. Lei, S. Yuan, H. Li. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B: Environ., 2018, 225, 154–161.
  • Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, J. Ye. Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications. Chemistry, 2012, 18, 14272–14275.
  • L. Song, J. Yang, S. Zhang. Enhanced photocatalytic activity of Ag3PO4 photocatalyst via glucose-based carbonsphere modification. Chem. Eng. J., 2017, 309, 222–229.
  • H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang, Y. Liu, Z. Kang. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem., 2012, 22, 10501–10506.
  • G. Li, L. Mao. Magnetically separable Fe3O4-Ag3PO4 sub-micrometre composite: facile synthesis, high visible light-driven photocatalytic efficiency, and good recyclability. RSC Adv., 2012, 2, 5108–5111 .
  • Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc., 2011, 133, 6490–6492.
  • S. Huang, Y Xu, Q. Liu, T. Zhou, Y. Zhao, L. Jing, H. Xu, H. Li. Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts. Appl. Catal. B: Environ., 2017, 218, 174–185.
  • S. Huang, Y. Xu, T. Zhou, M. Xie, Y. Ma, Q. Liu, L. Jing, H. Xu, H. Li. Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites. Appl. Catal. B: Environ., 2018, 225, 40–50.
  • C. Tang, E. Liu, J. Wan, X. Hu, J. Fan. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst. Appl. Catal. B: Environ., 2016, 181, 707–715.
  • C. Cui, Y. Qiu, H. Hu, N. Ma, S. Li, L. Xu, C. Li, J. Xu, W. Tang. Silver nanoparticles modified reduced graphene oxide wrapped Ag3PO4/TiO2 visible-light-active photocatalysts with superior performance. RSC Adv., 2016, 6, 43697–43706.
  • T. Yan, J. Tian, W. Guan, Z. Qiao, W. Li, J. You, B. Huang. Ultra-low loading of Ag3PO4 on hierarchical In2S3 microspheres to improve the photocatalytic performance: The cocatalytic effect of Ag and Ag3PO4. Appl. Catal. B: Environ., 2017, 202, 84–94.
  • J. Tang, J. Liu, C. Li, Y. Li, M. Tade, S. Dai, Y. Yamauchi. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed., 2015, 54, 588–593.
  • L. Ma, H. Zhuang, S. Wei, K. Hendrickson, M. Kim, G. Cohn, R. Hennig, L. Archer. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano., 2016, 10, 1050–1059.
  • V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, R. Zboril. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev., 2016, 116, 5464–5519.
  • L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J. Zhu. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013, 5, 4015–4039.
  • L. Li, X. Yan. Colloidal graphene quantum dots. J. Phys. Chem. Lett., 2010, 1, 2572–2576.
  • J. Peng, W. Gao, B. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. Alemany, X. Zhan, G. Gao, S. Vithayathil, B. Kaipparettu, A. Marti, T. Hayashi, J. Zhu, P. Ajayan. Graphene quantum dots derived from carbon fibers. Nano Lett., 2012, 12, 844–849.
  • D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5, 12272–12277.
  • X. Wang, G. Sun, P. Routh, D. Kim, W. Huang, P. Chen. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 2014, 43, 7067–7098.
  • Z. Lei, J. Wang, L. Wang, X. Yang, G. Xu, L. Tang. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. J. Hazard. Mater., 2016, 312, 298–306.
  • Q. Lu, Y. Zhang, S. Liu. Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J. Mater. Chem. A., 2015, 3, 8552–8558.
  • D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang, M. Wu. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng., 2015, 3, 2405–2413.
  • J. Liu, H. Xu, Y. Xu, Y. Song, J. Lian, Y. Zhao, L. Wang, L. Huang, H. Ji, H. Li. Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. Appl. Catal. B: Environ., 2017, 207, 429–437.
  • H. Xu, C. Wang, Y. Song, J. Zhu, Y. Xu, J. Yan, Y. Song, H. Li. CNT/ Ag3PO4 composites with highly enhanced visible light photocatalytic activity and stability. Chem. Eng. J., 2014, 241, 35–42.
  • J. Yan, C. Wang, H. Xu, Y. Xu, X. She, J. Chen, Y. Song, H. Li, Q. Zhang. AgI/ Ag3PO4 heterojunction composites with enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci., 2013, 287, 178–186.
  • P. Dong, Y. Wang, B. Cao, S. Xin, L. Guo, J. Zhang, F. Li. Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Appl. Catal. B: Environ., 2013, 132, 45–53.
  • Q. Liang, Y. Shi, W. Ma, Z. Li, X. Yang. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Phys. Chem. Chem. Phy., 2012, 14, 15657–15665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.