9
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and anomalous behavior of electrical properties of Ba modified CaCu3Ti4O12

, &
Pages 382-396 | Received 16 Mar 2018, Accepted 04 Jun 2018, Published online: 29 Sep 2018

References

  • T. Li, R. Xue, J. Hao, Y. Xue, Z. Chen. The effect of calcining temperatures on the phase purity and electric properties of CaCu3Ti4O12 ceramics. J. Alloys Compd., 2011, 509, 1025. doi:10.1016/j.jallcom.2010.09.163
  • M. Ahmadipour, M. F. Ain, Z. A. Ahmad. A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-Micro Lett., 2016, 8, 291–311. doi:10.1007/s40820-016-0089-1
  • F. Amaral, L. C. Costa, M. A. Valente, A. J. S. Fernandes, N. Franco, E. Alves, F. M. Costa. Colossal dielectric constant of poly-and single-crystalline CaCu3Ti4O12 fibres grown by the laser floating zone technique. Acta Mater., 2011, 59, 102–111. doi:10.1016/j.actamat.2010.09.014
  • L. F. Xu, K. Sun, X. Feng, H. Xiao, R. L. Wang, C. P. Yangy. Abnormal capacitance voltage behaviors of bismuth-doped CaCu3Ti4O12 ceramics. Int. J. Mod. Phys. B, 2017, 31, 1750133. doi:10.1142/S0217979217501338
  • T. T. Fang, Y. H. Wang, J. C. Kuo. Role of strained nano-regions in the formation of subgrains in CaCu3Ti4O12. J. Appl. Phys., 2011, 110, 024103. doi:10.1063/1.3610520
  • A. Srivastava, K. K. Jana, P. Maiti, D. Kumar, O. Parkash. Investigations on structural, mechanical, and dielectric properties of PVDF/ceramic composites. J. Eng., 2014, 2015, 1–9.
  • W. Dong, W. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, Y. Liu. Colossal dielectric behavior of Ga + Nb co-doped rutile TiO2. ACS Appl. Mater. Interfaces, 2015, 7, 25321–25325. doi:10.1021/acsami.5b07467
  • Y. Song, X. Wang, X. Zhang, Y. Sui, Y. Zhang, Z. Liu, Z. Lv, Y. Wang, P. Xu, B. Song. The contribution of doped-Al to the colossal permittivity properties ofAlxNb0.03Ti0.97-xO2 rutile ceramics. J. Mater. Chem. C, 2016, 4, 6798–6805. doi:10.1039/C6TC00742B
  • G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao. Colossal permittivity and impedance analysis of niobium and aluminum co-doped TiO2ceramics. RSC Adv., 2016, 6, 48708–48714. doi:10.1039/C6RA07746C
  • T. Nachaithong, W. Tuichaic, P. Kidkhunthodd, N. Chanlekd, P. Thongbaib, S. Maensiri. Preparation, characterization, and giant dielectric permittivity of(Y3 + and Nb5+) co–doped TiO2 ceramics. J. Eur. Ceram. Soc., 2017, 37, 3521–3526. doi:10.1016/j.jeurceramsoc.2017.04.040
  • Y. Zhu, J. C. Zheng, L. W. A. I. Frenkel, J. Hanson, P. Northrup, W. Ku. Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response. Phys. Rev. Lett., 2007, 99, 037602. doi:10.1103/PhysRevLett.99.037602
  • L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M. P. Thi. Na0.5K0.5NbO3 and 0.9Na0.5K0.5NbO3–0.1Bi0.5Na0.5TiO3 nanocrystalline powders synthesized by low-temperature solid-state reaction. Adv. Powder Technol., 2013, 24, 908–912. doi:10.1016/j.apt.2013.01.001
  • L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M. P. Thi. Effect of mechanical activation on the structure and ferroelectric property of Na0.5K0.5NbO3. Mater. Res. Bull., 2011, 46, 1467–1472. doi:10.1016/j.materresbull.2011.05.001
  • N. Ibrahim, A. K. Yahya, M. K. Talari. Effect of (Ba0.6Sr0.4)TiO3 (BST) doping on dielectric properties of CaCu3Ti4O12 (CCTO). J. Mater. Sci. Technol., 2012, 28, 1137–1144.
  • R. Schmidt, D. C. Sinclair. Anomalous increase of dielectric permittivity in Sr-doped CCTO ceramics Ca1–xSrxCu3Ti4O12 (0 = x = 0.2). Chem. Mater., 2010, 22, 6–8. doi:10.1021/cm903220z
  • M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight. High dielectric constant in ACu3Ti4O12 and A Cu3Ti4FeO12 phases J. Solid State Chem., 2000, 151, 323–325. doi:10.1006/jssc.2000.8703
  • M. Sahu, R. N. P. Choudhary, S. Das, S. Otta, B. K. Roul. Inter-grain mediated intrinsic and extrinsic barrier layer network mechanism involved in Ca1Cu3Ti4O12 bulk ceramic. J. Mater. Sci.: Mater. Electron., 2017, 28, 15676–15684. doi:10.1007/s10854-017-7457-6
  • Z. W. Li, J. G. Wu, W. J. Wu. Composition dependence of colossal permittivity in (Sm0.5Ta0.5)xTi1-xO2 ceramics. J. Mater. Chem. C, 2015, 3, 9206–9216. doi:10.1039/C5TC01659B
  • C. Zhao, J. Wu. Effects of secondary phases on the high-performance colossal permittivity in titanium dioxide ceramics. ACS Appl. Mater. Interfaces, 2018, 10, 3680–3688. doi:10.1021/acsami.7b18356
  • R. Xue, G. Zhao, J. Chen, Z. Chen, D. Liu. Effect of doping ions on the structural defect and the electrical behaviour of Ca1Cu3Ti4O12 ceramics. Mater. Res. Bull., 2016, 76, 124–132 doi:10.1016/j.materresbull.2015.12.020
  • P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri. Effects of Ta5+ doping on microstructure evolution, dielectric properties and electrical response in CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc., 2012, 32, 2423–2430. doi:10.1016/j.jeurceramsoc.2012.02.048
  • M. A. Sulaimain, S. D. Hutagalung, M. F. Ain, Z. A. Ahmad. Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. J. Alloys Compd., 2010, 493, 486–492. doi:10.1016/j.jallcom.2009.12.137
  • S. Senda, S. Rhouma, E. Torkani, A. Megriche, C. Autret. Effect of nickel substitution on electrical and microstructral properties of Ca1Cu3Ti4O12 ceramic. J. Alloys Compd., 2017, 698, 152–158. doi:10.1016/j.jallcom.2016.12.096
  • P. P. Rout, S. K. Pradhan, B. K. Roul. Room temperature ferroelectricity in multiferroics HoMnO3 ceramics. Physica B: Condens. Matter., 2012, 407, 2072–2077. doi:10.1016/j.physb.2012.02.007
  • L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju. Sol-gel synthesized pure CaCu3Ti4O12 with very low dielectric loss and high dielectric constant. Ceram Int., 2015, 41, 13486–13492. doi:10.1016/j.ceramint.2015.07.140
  • A. K. Jonscher. The ‘universal’ dielectric response. Nature, 1977, 267, 673–679. doi:10.1038/267673a0
  • M. T. Priyatham, R. Bauri. Synthesis and characterization of nanocrystalline Ni–YSZ cermet anode for SOFC. Mater Charact., 2010, 61, 54–58. doi:10.1016/j.matchar.2009.10.005
  • R. P. Pawar, V. Puri. Structural, electrical and dielectric properties of (Sr1-xCax) MnO3 (0 = x = 1.0) ceramics. Ceram. Int., 2014, 40, 10423–10430. doi:10.1016/j.ceramint.2014.03.013
  • U. C Chung, C. Elissalde, S. Mornet, M. Maglione, C. Estournes. Controlling internal barrier in low loss BaTiO3 supercapacitor. Appl. Phys. Lett., 2009, 94, 072903. doi:10.1063/1.3076125
  • K. Parida, S. K. Dehury, R. N. P. Choudhary. Structural, electrical and magneto-electric characteristics of complex multiferroic perovskite Bi0.5Pb0.5Fe0.5Ce0.5O3. J. Mater. Sci.: Mater Electron., 2016, 27, 11211–11219. doi:10.1007/s10854-016-5241-7
  • V. S. Yadav, D. K. Sahu, Y. Singh, D. C. Dhubkarya. The effect of frequency and temperature on dielectric properties of pure poly vinylidene fluoride (PVDF) thin films. AIP Conf. Proc., 2010, 1285, 267.
  • S. Sahoo, P. K. Mahapatra, R. N. P. Choudhary, M. L. Nandagoswamy. Dielectric and impedance spectroscopy of (Ba, Sm)(Ti, Fe)O3 system in the low-medium frequency range. J. Mater. Sci.: Mater. Electron., 2015, 26, 6572–6584. doi:10.1007/s10854-015-3255-1
  • L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu. Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater. Chem. Phys., 2013, 139, 3844–3850.
  • Y. Huang, L. Liu, D. Shi, S. S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadid. Giant dielectric permittivity and non-linear electrical behavior in CaCu3Ti4O12 varistors from the molten-salt synthesized powder. Ceram. Int., 2013, 39, 6063–6068. doi:10.1016/j.ceramint.2013.01.023
  • C. K. Suman, K. Prasad, R. N. P. Choudhary. Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J Mater. Sci., 2006, 41, 369–375. doi:10.1007/s10853-005-2620-5
  • J. Rout, B. N. Parida, P. R. Das, R. N. P. Choudhary. Structural, dielectric, and electrical properties of BiFeWO6 ceramic. J. Electron. Mater., 2014, 43, 732–739. doi:10.1007/s11664-013-2923-2
  • S. Sen, R. N. P. Choudhary, P. Pramanik. Structural and electrical properties of Ca2+-modified PZT electroceramics. Phys. B: Condens. Matter., 2007, 387, 56–62. doi:10.1016/j.physb.2006.03.028
  • S. Sahoo, S. Hajra, D. Manojit, R. N. P. Choudhary. Resistive, capacitive and conducting properties of Bi0.5Na0.5TiO3–BaTiO3 solid solution. Ceram. Int., 2017, 44, 4719–4726.
  • B. Behera, P. Nayak, R. N. P. Choudhary. Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull., 2008, 43, 401. doi:10.1016/j.materresbull.2007.02.042
  • T. Badapanda, V. Senthil, S. K. Rout, S. Panigrahi, T. P. Sinha. Dielectric relaxation on Ba 1–x Bi 2x/3 Zr 0.25 Ti 0.75 O 3 ceramic. Mater. Chem. Phys., 2012, 133, 863–870. doi:10.1016/j.matchemphys.2012.01.108
  • M. Ram. Electrical characteristics of Li(Ni7/10Fe3/10)VO4 ceramics. J. Alloys Compd., 2011, 509, 1744–1748. doi:10.1016/j.jallcom.2010.09.212
  • P. Gupta, R. Padhee, P. K. Mahapatra, R. N. P. Choudhary. Structural, dielectric, impedance and modulus spectroscopy of Bi2NdTiVO9 ferroelectric ceramics. J. Mater. Sci.: Mater. Electron., 2017, 28, 17344–17353. doi:10.1007/s10854-017-7667-y
  • B. Behera, P. Nayak, R. N. P. Choudhary. Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloys Compd., 2007, 436, 226–232. doi:10.1016/j.jallcom.2006.07.028
  • J. R. Macdonald. Note on the parameterization of the constant-phase admittance element. Solid State Ionics, 1984, 13, 147. doi:10.1016/0167-2738(84)90049-3
  • J. S. Lee, S. Lee, T. W. Noh, Resistive switching phenomena: a review of statistical physics approaches. Appl. Phys. Rev., 2015, 2, 031303. doi:10.1063/1.4929512

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.