63
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Physiological and pathophysiological implications of hydrogen sulfide: a persuasion to change the fate of the dangerous molecule

ORCID Icon & ORCID Icon
Pages 434-458 | Received 06 May 2018, Accepted 25 Jun 2018, Published online: 27 Oct 2018

References

  • L. J. Ignarro. Endothelium-derived nitric oxide: pharmacology and relationship to the actions of organic nitrate esters. Pharm. Res, 1989, 6, 651–659.
  • L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, G. Chaudhuri. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA, 1987, 84, 9265–9269.
  • D. E. Koshland. The molecule of the year. Science, 1992, 258, 1898; J. S. Stamler, D. J. Singel, J. Loscalzo. Biochemistry of nitric oxide and its redox-activated forms. Science, 1992, 258, 1898–1902.
  • L. J. Ignarro. Ed., Nitric Oxide: Biology and Pathobiology. Academic Press, 2000.
  • A. R. Butler, R. Nicholson. Life, Death and Nitric Oxide. The Royal Society of Chemistry, 2003.
  • S. Kalsner. Ed., Nitric Oxide and Free radicals in Peripheral Neurotransmission. Birkhauser, 2000.
  • S. R. Vincent. Nitric oxide neurons and neurotransmission. Prog. Neurobiol, 2010, 90, 246–255.
  • F. C. Fang. Ed., Nitric Oxide and Infection, Kluwer Academic/Plenum Publishers, 1999.
  • S. Moncada, E. A. Higgs, G. Bagetta. Eds., Nitric Oxide and Cell Proliferation, Differentiation and Death. Portland Press, 1998.
  • A. J. Burke, F. J.Sullivan, F. J.Giles, S. A. Glynn. The yin and yang of nitric oxide in cancer progression. Carcinogenesis, 2013, 34, 503–512.
  • L.Wu, R. Wang. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev, 2005, 57, 585–630.
  • C. G. Douglas, J. S. Haldane, J. B. Haldane. The laws of combination of haemoglobin with carbon monoxide and oxygen. J. Physiol. (Lond.), 1912, 44, 275–304.
  • J. B. S. Haldane. Carbon monoxide as a tissue poison. Biochem. J, 1927, 21, 1068–1075.
  • L. K. Weaver. Carbon monoxide poisoning. Crit. Care Clin, 1999, 15, 297–317.
  • D. Gorman, A. Drewry, Y. L. Huang, C. Sames. The clinical toxicology of carbon monoxide. Toxicol, 2003, 187, 25–38.
  • R. Tenhunen, H. S. Marver, R. Schmid. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA, 1968, 61, 748–755.
  • M. Barinaga. Carbon monoxide: killer to brain messenger in one step. Science, 1993, 259, 309.
  • B. Brune, V. Ullrich. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol. Pharmacol, 1987, 32, 497–504.
  • A.Verma, D. J. Hirsch, C. E. Glatt, G. V. Ronnett, S. H. Snyder. Carbon monoxide: a putative neural messenger. Science, 1993, 259, 381–404.
  • D. Mancardi, C. Penna, A. Merlino, P. D. Soldato, D. A. Winkc, P. Pagliaro. Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim. Biophys. Bioenerg, 2009, 1787, 864–872.
  • N. Fiedler, H. Kipen, P. Ohman-Srtickland, J. Zhang, C. Wiesel, R. Laumbach. Sensory and cognitive effects of acute exposure to hydrogen sulfide. Environ. Health Perspect, 2008, 116, 78–85.
  • Y. K. Gupta, A. K. Dahiya, K. H. Reeta. Gaso-transmitter hydrogen sulphide: potential new target in pharmacotherapy. Indian J. Exp. Biol, 2010, 48, 1069–1077.
  • K. Kobayashi, H. Fukushima. Suicidal poisoning due to hydrogen sulfide produced by mixing a liquid bath essence containing sulfur and a toilet bowl cleaner containing hydrochloric acid. Chudoku. Kenkyukai Jun Kikanshi, 2008, 21, 183–188.
  • S. Firorucci, E. Distrutti, G. Cirino, J. L. Wallace. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology, 2006, 131, 259–271.
  • M. W.Warenycia, L. R. Goodwin, C. G. Benishin, R. J. Reiffenstein, D. M. Francom, J. D. Taylor, F. P. Dieken. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharmacol, 1989, 38, 973–981.
  • L. R. Goodwin, D. Francom, F. P. Dieken, J. D. Taylor, M. W. Warenycia, R. J. Reiffenstein, G. Dowling. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J. Anal. Toxicol, 1989, 13, 105–109.
  • L. Li, P. Rose, P. K. Moore. Hydrogen sulfide and cell signaling. Ann. Rev. Pharmacol. Toxicol, 2011, 51, 169–187.
  • R.Wang. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? J. Fed. Am. Soc. Exp. Biol, 2002, 16, 1792–1798.
  • M. Tinajero-Trejo, H. E. Jesse, R. K. Poole. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas! F1000Prime Rep, 2013, 5, 28 (doi:10.12703/P5-28).
  • Y. Han, J. Qin, X. Chang, Z. Yang, X. Tang, J. Du. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem. Biophys. Res. Commun, 2005, 327, 431–436.
  • W. Zhao, R. Wang. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am. J. Physiol. Heart Circ. Physiol, 2002, 283, H474–H480.
  • E. Lowicka, J. Beltowski. Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists. Pharmacol. Rep, 2007, 59, 4–24.
  • J. O. Lundberg, E. Weitzberg, J. A. Cole, N. Benjamin. Nitrate, bacteria and human health. Nat. Rev. Microbiol, 2004, 2, 593–602.
  • L. A. H. Bowman, S. McLean, R. K. Poole, J. Fukuto. The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv. Microb. Physiol, 2011, 59, 135–219.
  • F. C. Fang. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol, 2004, 2, 820–832.
  • G. M. King, C. F. Weber. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat. Rev. Microbiol, 2007, 5, 107–118.
  • J. L. Slonczewski, J. W. Foster. Microbiology, an evolving science. W.W. Norton, 2009, p. 1096.
  • J. M. Mir, N. Jain, B. A. Malik, R. Chourasia, P. K. Vishwakarma, D. K. Rajak, R. C. Maurya. Urinary tract infection fighting potential of newly synthesized ruthenium carbonyl complex of N-dehydroacetic acid-N′-o-vanillin-ethylenediamine. Inorg. Chim. Acta, 2017, 467, 80–92.
  • R. C. Maurya, J. M. Mir. Medicinal industrial & environmental relevance of metal nitrosyl complexes: a review. Int. J. Sci. Eng. Res, 2014, 5, 305–320.
  • A. K.Mustafa, M. M. Gadalla, S. H. Snyder. Signaling by gasotransmitters. Sci. Signal, 2009, 2. doi:10.1126/scisignal.268re2
  • L. Li, P. Rose, P. K. Moore. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol, 2011, 51, 169–187.
  • R. Wang. Signal Transduction and the Gasotransmitters: NO, CO, and H2S in Biology and Medicine, Humana, 2004; P. K. Allan, R. E. Morris. (Ed.: D. M. P. Mingos), Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II, 154 Structure and Bonding, Springer-Verlag, 2014.
  • R. F. Furchgott, J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288, 373–376.
  • A. Hermann, G. F. Sitdikova, T. M. Weiger. Eds. Gasotransmitters: Physiology and Pathophysiology. Springer-Verlag, 2012.
  • W. Zhao, J. Zhang, Y. Lu, R.Wang. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J, 2001, 20, 6008–6016.
  • R. Wang. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev, 2012, 92, 791–896.
  • N. Shibuya, M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii, H. Kimura. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal, 2009, 11, 703–714.
  • C. Szabo. Gaseotransmitters: new frontiers for translational science. Sci. Transl. Med, 2010, 24, 59ps54. doi:10.1126/scitranslmed.3000721
  • M. Meier, M. anosik, V. Kery, J. P. Kraus, P. Burkhard. Structure of human cystathionine beta-synthase: a unique pyridoxal 5'-phosphate-dependent heme protein. EMBO J, 2001, 20, 3910–3916.
  • S. Yap, E. R. Naughten, B. Wilcken, D. E. Wilcken, G. H. Boers. Vascular complications of severe hyperhomocysteinemia in patients with homocystinuria due to cystathionine beta-synthase deficiency: effects of homocysteine-lowering therapy. Semin. Thromb. Hemost, 2000, 26, 335–340.
  • D. Mancardi, C. Penna, A. Merlino, P. D. Soldato, D. A. Wink, P. Pagliaro. Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim. Biophys. Acta, 2009, 1787, 864–872.
  • G. Caliendo, G. Cirino, V. Santagada, J. L. Wallace. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem, 2010, 53, 6275–6286.
  • M. V. Chan, J. L.Wallace. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. Am. J. Physiol. Gastrointest. Liver Physiol, 2013, 305, G467–G473.
  • M. Whiteman, J. S. Armstrong, S. H. Chu, S. Jia-Ling, B. S. Wong. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J. Neurochem, 2004, 90, 765–768.
  • L. Chang, B. Geng, F. Yu, J. Zhao, H. Jiang. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids, 2008, 34, 573–585.
  • B. Geng, J. Yang, Y. Qi, J. Zhao, Y. Pang. H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun, 2004, 313, 362–368.
  • A. J. Ellis, W. Giggenbach. Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution. Geochim. Cosmochim. Acta, 1971, 35, 247–260.
  • W. Giggenbach. Optical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulfide. Inorg. Chem, 1971, 10, 1333–1338.
  • R. J. Myers. The new low value for the second dissociation constant for H2S: its history, its best value, and its impact on the teaching of sulfide equilibria. J. Chem. Educ, 1986, 63, 687–690.
  • C. Bayse. ACS Symposium Series, American Chemical Society, Washington DC, 2013.
  • M. N. Hughes, N. M. Centelles, K. P. Moore. Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic. Biol. Med, 2009, 47, 1346–1353.
  • M. C. Belardinelli, A. Chabli, B. Chadefaux-Vekemans, P. Kamoun. Urinary sulfur compounds in Down syndrome. Clin. Chem, 2001, 47, 1500–1501.
  • K. Fischer, J. Chen, M. Petri, J. Gmehling. Solubility of H2S and CO2 in N-octyl-2-pyrrolidone and of H2S in methanol and benzene. AIChE J, 2002, 48, 887–893.
  • E. A. Guenther, K. S. Johnson, K. H. Coale. Direct ultraviolet spectrophotometric determination of total sulfide and iodide in natural waters. Anal. Chem, 2001, 73, 3481–3487.
  • R. O. Beauchamp Jr., J. S. Bus, J. A. Popp, C. J. Boreiko, D. A. Andjelkovich. A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol, 1964, 13, 25–97.
  • R. J. Reiffenstein, W. C. Hulbert, S. H. Roth. Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol, 1992, 32, 109–134.
  • S. Kage, S. Kashimura, H. Ikeda, K. Kudo, N. Ikeda. Fatal and nonfatal poisoning by hydrogen sulfide at an industrial waste site. J. Forensic Sci, 2002, 47, 652–655.
  • D. C. Glass. A review of the health effects of hydrogen sulphide exposure. Ann. Occup. Hyg, 1990, 34, 323–327.
  • C. Szabo. Hydrogen sulfide and its therapeutic potential. Nat. Rev. Drug. Discov, 2007, 6, 917–935.
  • L. Li, P. K. Moore. Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol. Sci, 2008, 29, 84–90.
  • T. Chiku, D. Padovani, W. Zhu, S. Singh, V. Vitvitsky, R. Banerjee. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem, 2009, 284, 11601–11612.
  • J. C. Savage, D. H. Gould. Determination of sulfide in brain tissue and rumen fluid by ioninteraction reversed-phase high-performance liquid chromatography. J. Chromatogr, 1990, 526, 540–545.
  • J. Furne, A. Saeed, M. D. Levitt, Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2008, 295, R1479–R1498.
  • M. Ishigami, K. Hiraki, K. Umemura, Y. Ogasawara, K. Ishii, H. Kimura. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal, 2009, 11, 205–214.
  • E. A. Wintner, T. L. Deckwerth, W. Langston, A. Bengtsson, D. Leviten, P. Hill, M. A. Insko, R. Dumpit, E. VandenEkart, C. F. Toombs, C. Szabo. A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. Br. J. Pharmacol, 2010, 160, 941–957.
  • M. D. Levitt, M. S. Abdel-Rehim, J. Furne. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid. Red. Signal, 2011, 15, 373–378.
  • P. Kamoun. Endogenous production of hydrogen sulfide in mammals. Amino Acids, 2004, 26, 243–254.
  • J. Y. Zhang, Y. P. Ding, Z. Wang, Y. Kong, R. Gao, G. Chen. Hydrogen sulfide therapy in brain diseases: from bench to bedside. Med. Gas Res, 2017, 7, 113–119.
  • J. F. Wang, Y. Li, J. N. Song, H. G. Pang. Role of hydrogen sulfide in secondary neuronal injury. Neurochem. Int, 2014, 64, 37–47.
  • S. J. Chan, P. T. Wong. Hydrogen sulfide in stroke: protective or deleterious? Neurochem. Int, 2017, 105, 1–10.
  • X. J. Li, C. K. Li, L. Y. Wei, N. Lu, G. H. Wang, H. G. Zhao, D. L. Li. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats. Neural Regen. Res, 2015, 10, 932–937.
  • V. Citi, E. Piragine, L. Testai, M. C. Breschi, V. Calderone, A. Martelli. The role of hydrogen sulfide and H2S-donors in myocardial protection against ischemia/reperfusion injury. Curr. Med. Chem, 2018. DOI: 10.2174/0929867325666180212120504
  • K. R. Olson, R. A. Dombkowski, M. J. Russell, M. M. Doellman, S. K. Head, N. L. Whitfield, J. A. Madden. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hyp9oxic vasodilation. J. Exp. Biol, 2006, 209, 4011–4023.
  • H. Kimura. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal, 2010, 12, 1111–1123.
  • Y. Kimura, H. Kimura. Hydrogen sulfide protects neurons from oxidative stress. FASEB J, 2004, 18, 1165–1167.
  • Y. Kimura, Y.-I. Goto, H. Kimura. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Red. Signal, 2010, 12, 1–13.
  • M. Whiteman, N. S. Cheung, Y. Z. Zhu, S. H. Chu, J. L. Siau, B. S. Wong, J. S. Armstrong, P. K. Moore. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem. Biophys. Res. Commun, 2005, 326, 794–798.
  • J. W. Elrod, J. W. Calvert, J. Morrison, J. E. Doeller, D. W. Kraus, L. Tao, X. Jiao, R. Scalia, L. Kiss, C. Szabo. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. USA, 2007, 104, 15560–15565.
  • N. Sen, B. D. Paul, M. M. Gadalla, A. K. Mustafa, T. Sen, R. Xu, S. Kim, S. H. Snyder. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol. Cell, 2012, 45, 13–24.
  • N. Krishnan, C. Fu, D. J. Pappin, N. K. Tonks. H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal, 2011, 4, ra86.
  • Y. Mikami, N. Shibuya, Y. Kimura, N. Nagahara, M. Yamada, H. Kimura. Hydrogen sulphide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J. Biol.Chem, 2011, 286, 39379–39386.
  • Y. Kimura, R. Dargusch, D. Schubert, H. Kimura. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Red. Signal, 2006, 8, 661–670.
  • D. Johansen, K. Ytrehus, G. F. Baxter. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury—evidence for a role of KATP channels. Basic Res. Cardiol, 2006, 101, 53–60.
  • Y. G. Sun, Y. X. Cao, W. W. Wang, S. F. Ma, T. Yao, Y. C. Zhu. Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc. Res, 2008, 79, 632–641.
  • K. Umemura, H. Kimura. Hydrogen sulfide enhances reducing activity in neurons: neurotropic role of H2S in the brain? Antioxid. Red. Signal, 2007, 9, 2035–2041.
  • K. Shatalin, E. Shatalina, A. Mironov, E. Nudler. H2S: a universal defense against antibiotics in bacteria. Science, 2011, 334, 986–990.
  • M. A. Kohanski, M. A. DePristo, J. J. Collins. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell, 2010, 37, 311–320.
  • I. Gusarov, M. Starodubtseva, Z. Q. Wang, L. McQuade, S. J. Lippard, D. J. Stuehr, E. Nudler. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J. Biol. Chem, 2008, 283, 13140–13147.
  • J. W. Calvert, S. Jha, S. Gundewar, J. W. Elrod, A. Ramachandran, C. B. Pattillo, C. G. Kevil, D. J. Lefer. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling, Circ. Res, 2009, 105, 365–374.
  • Y. Mikami, N. Shibuya, Y. Kimura, N. Nagahara, Y. Ogasawara, H. Kimura. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulphide. Biochem. J, 2011, 439, 479–485.
  • J. H. Suh, S. V. Shenvi, B. M. Dixon, H. Liu, A. K. I. Jaiswal, R. M. Liu, T. M. Hagen. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. USA, 2004, 101, 3381–3386.
  • J. D. Malhotra, R. J. Kaufman. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Red. Signal, 2007, 9, 2277–2293.
  • A. Wenzel, C. Grimm, M. Samardzija, C. E. Reme. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog. Retin. Eye Res, 2005, 24, 275–306.
  • R. Hosoki, N. Matsuki, H. Kimura. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun, 1997, 237, 527–531.
  • J. R. Koenitzer, T. S. Isbell, H. D. Patel, G. A. Benavides, D. A. Dickinson, R. P. Patel, V. M. Darley-Usmar, J. R. Lancaster Jr., J. E. Doeller, D. W. Kraus. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am. J. Physiol. Heart Circ. Physiol, 2007, 292, H1953–H1960.
  • K. Shikano, C. J. Long, E. H. Ohlstein, B. A. Berkowitz. Comparative pharmacology of endothelium-derived relaxing factor and nitric oxide. J. Pharmacol. Exp. Ther, 1988, 247, 873–881.
  • G. Chen, H. Suzuki, A. H. Weston. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br. J. Pharmacol, 1988, 95, 1165–1174.
  • N. Shibuya, Y. Mikami, Y. Kimura, N. Nagahara, H. Kimura. Vascular endothelium exresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem, 2009, 146, 623–626.
  • K. R. Olson, N. L. Whitfield, S. E. Bearden, J. S. Leger, E. Nilson, Y. Gao, J. A. Maddeen. Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am. J. Physiol. Regal. Integr. Comp. Physiol, 2010, 298, R51–R60.
  • G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder, R. Wang. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science, 2008, 322, 587–590.
  • G. F. Chen, D. W. Cheung. Characterization of acetylcholine-induced membrane hyperpolarization in endothelial cells. Circ. Res, 1992, 70, 257–263.
  • D. M. Eckman, J. D. Frankovich, K. D. Keef. Comparison of the actions of acetylcholine and BRL 38227 in the guinea-pig coronary artery. Br. J. Pharmacol, 1992, 106, 9–16.
  • C. J. Garland, F. Plane, B. K. Kemp, T. M. Cocks. Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol. Sci, 1995, 16, 23–30.
  • I. Ishii, N. Akahoshi, H. Yamada, S. Nakano, T. Izumi, M. Suematsu. Cystathionine γ–lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J. Biol. Chem, 2010, 285, 26358–26368.
  • K. S. Wood, G. M. Buga, R. E. Byrns, L. J. Ignarro. Vascular smooth muscle-derived relaxing factor (MDRF) and its close similarity to nitric oxide. Biochem. Biophys. Res. Commun, 1990, 170, 80–98.
  • Y. J. Peng, J. Nanduri, G. Raghuraman, D. Souvannakitti, M. M. Gadalla, G. K. Kumar, S. H. Snyder, N. R. Prabhakar. H2S mediates O2 sensing in the carotid body. Proc. Natl. Acad. Sci. USA, 2010, 107, 10710–10724.
  • W. J. Kwak, G. S. Kwon, I. Jin, H. Kuriyama, H. Y. Sohn. Involvement of oxidative stress in the regulation of H2S production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEMS Microbiol. Lett, 2003, 219, 99–104.
  • H. Kimura. Hydrogen sulfide as a neuromodulator. Mol. Neurobiol, 2002, 26, 13–19.
  • Y. Enokido, E. Suzuki, K. Iwasawa, K. Namekata, H. Okazawa, H. Kimura. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J, 2005, 19, 1854–1856.
  • A. Ichinohe, T. Kanaumi, S. Takashima, Y. Enokido, Y. Nagai, H. Kimura. Cystathionine beta-synthase is enriched in the brains of Down's patients. Biochem. Biophys. Res. Commun, 2005, 338, 1547–1550.
  • L. F. Hu, P. T. Wong, P. K. Moore, J. S. Bian. Hydrogen sulfide attenuates lipopolysaccharideinduced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J. Neurochem, 2007, 100, 1121–1128.
  • C. W. Leffler, H. Parfenova, S. Basuroy, J. H. Jaggar, E. S. Umstot, A. L. Fedinec. Hydrogen sulfide and cerebral microvascular tone in newborn pigs. Am. J. Physiol. Heart. Circ. Physiol, 2011, 300, H440–H447.
  • K. Robert, F. Vialard, E. Thiery, K. Toyama, P. M. Sinet, N. Janel, J. London. Expression of the cystathionine beta synthase (CBS) gene during mouse development and mmunolocalization in adult brain. J. Histochem. Cytochem, 2003, 51, 363–371.
  • R. Dingledine, K. Borges, D. Bowie, S. F. Traynelis. The glutamate receptor ion channels. Pharmacol. Rev, 1999, 51, 7–61.
  • K. Abe, H. Kimura. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci, 1996, 16, 1066–1071.
  • N. S. Cheung, Z. F. Peng, M. F. Chen, P. K. Moore, M. Whiteman. Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology, 2007, 53, 505–514.
  • K. Kaila. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol, 1994, 42, 489–537.
  • M. Chebib, G. A. Johnston. The “'ABC' of GABA receptors: a brief review”. Clin. Exp. Pharmacol. Physiol, 1999, 26, 937.
  • H. Bading, D. D. Ginty, M. E. Greenberg. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science, 1993, 260, 181–186.
  • D. E. Clapham. Calcium signaling. Cell, 2007, 131, 1047–1058.
  • A. Kawabata, T. Ishiki, K. Nagasawa, S. Yoshida, Y. Maeda, T. Takahashi, F. Sekiguchi, T. Wada, S. Ichida, H. Nishikawa. Hydrogen sulfide as a novel nociceptive messenger. Pain, 2007, 132, 74–81.
  • K. Qu, C. P. Chen, B. Halliwell, P. K. Moore, P. T. Wong. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke, 2006, 37, 889–893.
  • Y. Nagai, M. Tsugane, J. Oka, H. Kimura. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J, 2004, 18, 557–559.
  • H. Jouhou, K. Yamamoto, A. Homma, M. Hara, A. Kaneko, M. Yamada. Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V-ATPase. J. Physiol, 2007, 585, 401–412.
  • D. Krizaj, D. R. Copenhagen. Calcium regulation in photoreceptors. Front. Biosci, 2002, 7, d2023–d2044.
  • Y. Feng, M. Forgac. A novel mechanism for regulation of vacuolar acidification. J. Biol. Chem, 1992, 267, 19769–19772.
  • R. Clarke, A. D. Smith, K. A. Jobst, H. Refsum, L. Sutton, P. M. Ueland. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol, 1998, 55, 1449–1455.
  • K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun, 2002, 293, 1485–1488.
  • X. Q. Tang, C. T. Yang, J. Chen, W. L. Yin, S. W. Tian, B. Hu, J. Q. Feng, Y. J. Li. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin. Exp. Pharmacol. Physiol, 2008, 35,180–186.
  • M. Lee, A. Sparatore, P. Del Soldato, E. McGeer, P. L. McGee. Hydrogen sulphide releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia, 2010, 58, 103–113.
  • Q. H. Gong, Q. Wang, L. L. Pan, X. H. Liu, H. Xin, Y. Z. Zhu. S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-kB pathway in rats. Brain Behav. Immun, 2011, 25,110–119.
  • N. Gupta, T. D. Porter. Garlic and garlic-derived compounds inhibit human squalene monooxygenase. J. Nutr, 2001, 131, 1662–1667.
  • V. B. Gupta, S. S. Indi, K. S. Rao. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer’s disease. Phytother. Res, 2009, 23, 111–115.
  • G. A. Benavides, G. L. Squadrito, R. W. Mills, H. D. Patel, T. S. Isbell, R. P. Patel, V. M. Darley-Usmar, J. Doeller, D. W. Kraus. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA, 2007, 104, 17977–17982.
  • D. Giuliani, A. Ottani, D. Zaffe, M. Galantucci, F. Strinati, R. Lodi, S. Guarini. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol. Learn. Mem, 2013, 104, 82–91.
  • L. M. Zhang, C. X. Jiang, D. W. Liu. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem. Res, 2009, 34, 1984–1992.
  • L. F. Hu, M. Lu, C. X. Tiong, G. S. Dawe, G. Hu, J. S. Bian. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell, 2010, 9, 135–146.
  • C. X. Tiong, J. S. Bian. Protective effect of hydrogen sulfide against 6-OHDA induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br. J. Pharmacol, 2010, 161, 467–480.
  • W. L. Yin, J. Q. He, B. Hu, Z. S. Jiang, X. Q. Tang. Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life. Sci, 2009, 85, 269–275.
  • K. Kida, M. Yamada, K. Tokuda, E. Marutani, M. Kakinohana, M. Kaneki, F. Ichinose. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid. Redox Signal, 2011, 15, 343–352.
  • J. M. Mir, N. Jain, P.S. Jaget, W. Khan, P.K. Vishwakarma, D.K. Rajak, B. A. Malik, Ram. C. Maurya. Urinary tract anti-infectious potential of DFT-experimental composite analyzed ruthenium nitrosyl complex of N-dehydroacetic acid-thiosemicarbazide. J. King Saud Univ. Sci, 2017. http://dx.doi.org/10.1016/j.jksus.2017.06.006
  • R. C. Maurya, J. M. Mir, P. K. Vishwakarma. Some aspects of physiologically relevant signaling by gasotransmitters, NO, CO and H2S: a review. J. Ravishankar Univ. Raipur B, 2015, 28, 1–27.
  • J. M. Mir. A Gentle Introduction to Gasotransmitters, NO, CO and H2S. Lap Lambert Academic Publishing, 2017. ISBN: 978-3-330-01114-4.
  • J. M. Mir, R. C. Maurya. A new Ru(II) carbonyl complex of 2-benzoylpyridine: medicinal and material evaluation at the computational–experimental convergence. J. Chinese Adv. Mater. Soc, 2018, 36, 156.
  • J. M. Mir, N. Jain, P.S. Jaget, R.C. Maurya. Density functionalized [RuII(NO)(Salen)(Cl)] complex: computational photodynamics and in vitro anticancer facets. Photodiagn. Photodyn. Ther, 2017, 19, 363–374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.