24
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Predictive capability evaluation of RSM and ANN models in adsorptive treatment of crystal violet dye simulated wastewater using activated carbon prepared from Raphia hookeri seeds

, &
Pages 478-496 | Received 11 Apr 2018, Accepted 03 Jul 2018, Published online: 11 Jan 2019

References

  • H. Dezhampanah, A. Mousazadeh, I. Mousazadeh. Removal of an anionic dye from wastewaters by adsorption on modified rice husk and sugarcane bagasse. Int. J. Hybrid Inform. Technol., 2014, 7, 309–320.
  • R. Ravikumar, K. Renuka, V. Sindhu, K. B. Malarmathi. Response surface methodology and artificial neural network for modeling and optimization of distillery spent wash treatment using Phormidium valderianum BDU 140441. Pol. J. Environ. Stud., 2013, 22, 1143–1152.
  • S. Pankaj, K. Harleen. Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste. Appl. Water Sci., 2011, 1, 135–145.
  • P. Banerjee, A. Mukhopadhyaya, P. Dasb. Graphene oxide–nanobentonite composite sieves for enhanced desalination and dye removal. Desalination, 2017. http://dx.doi.org/10.1016/j.desal.2017.06.010.
  • E. A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi, A. Goudarzi. Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: chemometric optimization and modeling. Ultrason. Sonochem., 2017, 34, 677–691.
  • M. T. Uddin, M. A Islam, S. Mahmud, M. Rukanuzzaman. Adsorptive removal of methylene blue by tea waste. J. Hazard. Mater., 2009, 164, 53–60.
  • K. Ravikumar, S. Krishnan, S. Ramalingam, K. Balu. Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent. Dyes Pigm., 2007, 72, 66–74.
  • G. Bayramoglu, B. Altintas, M. Arica. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem. Eng. J., 2009, 152, 339–346.
  • A Loqman, B. El Bali, J. Lu¨tzenkirchen, P. Weidler, A. Kherbeche. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology. Appl. Water Sci., 2017, 7, 3649–3660.
  • G. Ciobanu, M. Harja, M. Diaconu, C. Cimpeanu, R. Teodorescu, D. Bucur. Crystal violet dye removal from aqueous solution by nanohydroxyapatite. J. Food Agric. Environ., 2014, 12, 499–502.
  • S. Lairini, K. El Mahtal, Y. Miyah, K. Tanji, S. Guissi, S. Boumchita, F. Zerrouq. The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies. J. Mater. Environ. Sci., 2017, 8, 3252–3261.
  • P. D. Saha, S. Chakraborty, S. Das. Optimization of hazardous crystal violet by chemically treated rice husk: using central composite response surface methodology. Arch. Environ. Sci., 2012, 6, 57–61.
  • L. Jayalakshmi, V. Devadoss, K. Ananthakumar. Adsorption of acid orange-7 dye onto activated carbon produced from bentonite - A study of equilibrium adsorption isotherm. Chem. Sci. Trans., 2013, 2, S7–S12.
  • M. Uğurlu, A. Gürses, C. Doğar. Adsorption studies on the treatment of textile dyeing effluent by activated carbon prepared from olive stone by ZnCl2 activation. Color. Technol., 2007, 123, 106–114.
  • G. Sudipta, P. Banerjee, S. Datta, A. Mukhopadhayay, P. Das. Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater. Process Saf. Environ. Protect., 2017, 106, 163–172.
  • M. Mukherjee, S. Goswami, P. Banerjee, S. Sengupta, P. Das, P. K. Banerjee, S. Datta. Ultrasonic assisted graphene oxide nanosheet for the removal of phenol containing solution. Environ. Technol. Innov., 2017. doi: 10.1016/j.eti.2016.11.006.
  • A. R. Bagheri, M. Ghaedi, S. Hajati, A. M. Ghaedi, A. Goudarzi, A. Asfaram. Random forest model for the ultrasonic-assisted removal of chrysoidine G by copper sulfide nanoparticles loaded on activated carbon; response surface methodology approach, RSC Adv., 2015, 5, 59335–59343.
  • C. C. Okoye, O. D. Onukwuli, C. F. Okey-Onyesolu, I. C. Nwokedi. Adsorptive removal of Erythrosin B dye onto Terminalia Catappa endocarp prepared activated carbon: kinetics, isotherm and thermodynamics studies. Chem. Process Eng. Res., 2016, 43, 26–43.
  • K. M. Desai, S. A. Survase, P. S. Saudagar, S. S. Lele, R. S. Singhal. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem. Eng. J., 2008, 41, 266–273.
  • S. J. Kalil, F. Maugeri, M. I. Rodrigues. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem., 2000, 35, 539–550.
  • M. Fan, T. Li, J. Hu, R. Cao, X. Wei, X. Shi, W. Ruan. Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nzvi/rgo) composites. Materials, 2017, 10, 1–22.
  • S. Amin, G. Hawash, S. El Diwani. Kinetics and thermodynamics of oil extraction from Jatropha curcas in aqueous acidic hexane solutions. J. Am. Sci., 2010, 6, 293–300.
  • J. K. Rao, K. Chul-Ho, S. K. Rhee. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem., 2000, 35, 639–647.
  • R. Velmurugan, K. Muthukumar. Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour. Technol., 2012, 112, 293–299.
  • C. W. Zobel, D. F. Cook. Evaluation of neural network variable influence measures for process control. Eng. Appl. Artif. Intell., 2011, 24, 803–812.
  • C. Y. Cheok, N. L. Chin, Y. A. Yusof, R. A. Talib, C. L. Law. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Ind. Crops Prod., 2012, 40, 247–253.
  • M. Khayet, C. Cojocaru. Artificial neural network model for desalination by sweeping gas membrane distillation, Desalination, 2013, 308, 102–110.
  • C. C. Okoye, O. D. Onukwuli, C. F. Okey-Onyesolu. Utilization of salt activated Raphia hookeri seeds as biosorbent for Erythrosine B dye removal: kinetics and thermodynamics studies. J. King Saud Univ. Sci., 2018. doi: 10.1016/j.jksus.2017.11.004.
  • G. E. P. Box, J. S. Hunter, W. G. Hunter. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed. Wiley-Interscience, Hoboken, 2005.
  • Sh. Youssefi, Z. Emam-Djomeh, S. M. Mousavi. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Dry. Technol., 2009, 27, 910–917.
  • C. Agu, M. Menkiti, C. Kadurumba, N. Menkiti. Process parameter optimization for transformer oil extraction from Terminalia catappa seed using response surface methodology. J. Chin. Adv. Mater. Soc., 2015, 3, 328–344.
  • T. G. Dobre, J. G. Sanchez Marcano. Chemical Engineering Modeling, Simulation and Similitude. Wiley VCH, Germany, 2007.
  • J. L. Pilkington, C. Preston, R. L. Gomes. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind. Crops. Prod., 2014, 58, 15–24.
  • G. D. Garson. Interpreting neural network connection weights. AI Expert., 1991, 6, 46–51.
  • M. Gevrey, I. Dimopoulos, S. Lek. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model., 2003, 160, 249–264.
  • C. Maosen, F. A. Nizar, P. Lixia, N. Drahomír. (Ed: L. Joao), Artificial Neural Networks - Models and Applications. London, UK: InTEch, 2016, Advanced Methods in Neural Networks-Based Sensitivity Analysis with their Applications in Civil Engineering, 335–353.
  • P. Pakravan, A. Akhbari, H. Moradi, A. H. Azandaryani, A. M. Mansouri, M. Safari. Process modeling and evaluation of petroleum refinery wastewater treatment through response surface methodology and artificial neural network in a photocatalytic reactor using polyethyleneimine (PEI)/titania (TiO2) multilayer film on quartz tube. Appl. Petrochem. Res., 2014, 5, 47–59.
  • J. P. Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alexandria Univ. J., 2013, 52, 507–516.
  • M. Yolmeh, M. B. Habibi Najafi, R. Farhoosh. Optimization of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem., 2014, 155, 319–324.
  • N. Yuliusman, M. K. Afdhol, R. A. Amiliana, A. Hanafi, B. Rachmanda. Preparation of activated carbon from palm shells using KOH and ZnCl2 as the activating agent. Mater. Sci. Eng., 2017, 180, 1–7.
  • O. A. Ekpete, M. J. Horsfall. Preparation and characterization of activated carbon derived from fluted pumpkin stem waste (Telfairia occidentalis Hook F). Res. J. Chem. Sci., 2011, 1, 141.
  • Y. Jie, Z. Panyue, H. Erhard, Z. Guangming, T. Yinan, D. Johanna, L. Yang. Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption. Water Air Soil Pollut., 2014, 225, 2225.
  • A. R. Khataee, M. Fathinia, S. Aber, M. Zarei. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification. J. Hazard. Mater., 2010, 181, 886–897.
  • M. Mourabet, A. El Rhilassi, M. Bennani-Ziatni, A. Taitai. Comparative Study of Artificial Neural Network and Response Surface Methodology for Modelling and Optimization the Adsorption Capacity of Fluoride onto Apatitic Tricalcium Phosphate. Univer. J. Appl. Math., 2014, 2, 84–91.
  • S. Kitanovic, D. Milenovic, V. B. Veeljkovic. Empirical kinetic models for the resinoid extraction from aerial parts of St John’s Wort (Hypericum perforatum L.). J. Biochem. Eng., 2008, 41, 1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.