31
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Efficiency of polymer/nanocarbon-based nanocomposite membranes in water treatment techniques

Pages 508-526 | Received 03 Jul 2018, Accepted 21 Aug 2018, Published online: 31 Dec 2018

References

  • M. Tuzen. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem. Toxicol. 2009, 47, 1785–1790.
  • R. Das, S. B. A. Hamid, M. E. Ali, A. F. Ismail, M. S. M. Annuar, S. Ramakrishna. Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 2014, 354, 160–179.
  • V. K. Gupta, P. J. M. Carrott, M. M. L. Ribeiro Carrott. Low-cost adsorbents: growing approach to wastewater treatment—a review. Critic. Rev. Environmen. Sci. Technol. 2009, 39, 783–842.
  • X. Dai, S. Wu, S. Li. Progress on electrochemical sensors for the determination of heavy metal ions from contaminated water. J. Chinese Adv. Mater. Soc. 2018, 6, 91–111.
  • M. Goyal, M. Bhagat, R. Dhawan. Removal of mercury from water by fixed bed activated carbon columns. J. Hazard. Mater. 2009, 171, 1009–1015.
  • J. V. Nabais, J. Gomes, P. Carrott, C. Laginhas, S. Roman. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties. J. Hazard. Mater. 2009, 167, 904–910.
  • B. Pulido, S. Chisca, S. P. Nunes. Solvent and thermal resistant ultrafiltration membranes from alkyne-functionalized high-performance polymers. J. Membr. Sci. 2018, 564, 361–371.
  • J. Li, B. Xiong, C. Yin, X. Zhang, Y. Zhou, Z. Wang, P. Fang, C. He. Free volume characteristics on water permeation and salt rejection of polyamide reverse osmosis membranes investigated by a pulsed slow positron beam. J. Membr. Sci. 2018, 1–14.
  • S. -T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Coll. Interfac. Sci. 2010, 351, 122–127.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
  • C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj. Graphene: the new two-dimensional nanomaterial. Angewan. Chem. Int. Ed. 2009, 48, 7752–7777.
  • G. Eda, M. Chhowalla. Graphene-based composite thin films for electronics. Nano Lett. 2009, 9, 814–818.
  • M. J. McAllister, J. -L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.
  • R. K. Thines, N. M. Mubarak, S. Nizamuddin, J. N. Sahu, E. C. Abdullah, P. Ganesan. Application potential of carbon nanomaterials in water and wastewater treatment: a review. J. Taiwan Institut. Chem. Engineer. 2017, 72, 116–133.
  • X. Wang, Y. Zhao, E. Tian, J. Li, Y. Ren. Graphene oxide‐based polymeric membranes for water treatment. Adv. Mater. Interfac. 2018, 5, 1701427.
  • Z. Xu, X. Li, K. Teng, B. Zhou, M. Ma, M. Shan, K. Jiao, X. Qian, J. Fan. High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal. J. Membr. Sci. 2017, 535, 94–102.
  • J. Wang, P. Zhang, B. Liang, Y. Liu, T. Xu, L. Wang, B. Cao, K. Pan. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl. Interfac. 2016, 8, 6211–6218.
  • A. Karkooti, A. Z. Yazdi, P. Chen, M. McGregor, N. Nazemifard, M. Sadrzadeh, M. Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment. J. Membr. Sci. 2018, 560, 97–107.
  • X. Zhao, Q. Zhang, Y. Hao, Y. Li, Y. Fang, D. Chen. Alternate multilayer films of poly (vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules 2010, 43, 9411–9416.
  • K. Dasgupta, J. B. Joshi, S. Banerjee. Fluidized bed synthesis of carbon nanotubes–a review. Chem. Engineer. J. 2011, 171, 841–869.
  • A. Kausar, I. Rafique, Z. Anwar, B. Muhammad. Recent developments in different types of flame retardants and effect on fire retardancy of epoxy composite. Polym.-Plast. Technol. Engineer. 2016, 55, 1512–1535.
  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. Weinheim 2010, 22, 3906–3924.
  • S. Iijima. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
  • K. Balasubramanian, M. Burghard. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192.
  • S. Suzuki, S. Mori. Impacts of different sulfur sources as a promoter on the growth of carbon nanotubes in chemical vapor deposition. Chem. Phys. Lett. 2018, 709, 1–6.
  • M. R. Condruz, I. S. Vintil ă. Carbon nanotube and nanoclay based polymeric composites–recent achievements and future development directions. Sci. J. TURBO, IV, 2017, 1, 19–22.
  • P. Kumar, J. Srinivas. Elastic and thermal property studies of CNT reinforced epoxy composite with waviness, agglomeration and interphase effects. Int. J. Mater. Engineer. Innovat. 2018, 9, 158–177.
  • M. F. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart. Carbon nanotubes: present and future commercial applications. Science 2013, 339, 535–539.
  • W. Koros, G. Fleming, S. Jordan, T. Kim, H. Hoehn. Polymeric membrane materials for solution-diffusion based permeation separations. Prog. Polym. Sci. 1988, 13, 339–401.
  • H. M. Hegab, L. Zou. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 2015, 484, 95–106.
  • S. J. Kim, S. H. Ko, K. H. Kang, J. Han. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297–301.
  • R. W. Baker. Membrane Technology and Applications. John Wiley & Sons, Ltd, 2004, 96–103.
  • B. W. Rowe, B. D. Freeman, D. R. Paul. Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 2009, 50, 5565–5575.
  • Y. Shen, H. Wang, J. Liu, Y. Zhang. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture. ACS Sustain. Chem. Engineer. 2015, 3, 1819–1829.
  • E. Brauns. Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output. Desalination 2009, 237, 378–391.
  • B. Freeman, Y. Yampolskii, I. Pinnau. Materials Science of Membranes for Gas and Vapor Separation. John Wiley & Sons, 2006.
  • G. Liu, W. Jin, N. Xu. Graphene-based membranes. Chem. Soc. Rev. 2015, 44, 5016–5030.
  • D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.
  • S. Kumar Kannam, B. Todd, J. S. Hansen, P. J. Daivis. Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys. 2012, 136, 024705.
  • W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan, Q. Zheng. Strain engineering water transport in graphene nanochannels. Phys. Rev. E. 2011, 84, 056329.
  • X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang. Graphene‐based materials: synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.
  • Y. Han, Z. Xu, C. Gao. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.
  • C. A. Crock, A. R. Rogensues, W. Shan, V. V. Tarabara. Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res. 2013, 47, 3984–3996.
  • H. Liu, H. Wang, X. Zhang. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 2015, 27, 249–254.
  • Y. L. F. Musico, C. M. Santos, M. L. P. Dalida, D. F. Rodrigues, Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain. Chem. Engineer. 2014, 2, 1559–1565.
  • F. Perreault, M. E. Tousley, M. Elimelech. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 2013, 1, 71–76.
  • W. -S. Hung, Q. -F. An, M. De Guzman, H. -Y. Lin, S. -H. Huang, W. -R. Liu. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 2014, 68, 670–677.
  • V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang, K. S. Kim. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS nano 2010, 4, 3979–3986.
  • J. Lee, H. R. Chae, Y. J. Won, K. Lee, C. H. Lee, H. H. Lee. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 2013, 448, 223–230.
  • S. Krishnan, C. J. Weinman, C. K. Ober. Advances in polymers for anti-biofouling surfaces. J. Mater. Chem. 2008, 18, 3405–3413.
  • M. C. Van Loosdrecht, W. Norde, A. Zehnder. Physical chemical description of bacterial adhesion. J. Biomater. Applicat. 1990, 5, 91–106.
  • M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, A. M. Mayes. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.
  • M. Kraume, A. Drews. Membrane bioreactors in waste water treatment-status and trends. Chem. Engineer. Technol. 2010, 33, 1251–1259.
  • Y. Zhang, S. Japip, T. S. Chung. Thermally evolved and boron bridged graphene oxide (GO) frameworks constructed on microporous hollow fiber substrates for water and organic matters separation. Carbon 2017, 123, 193–204.
  • Y. Zhang, T. S. Chung. Graphene oxide membranes for nanofiltration. Curr. Opin. Chem. Engineer. 2017, 16, 9–15.
  • N. A. Mohamed, A. O. H. Al-Dossary. Structure-property relationships for novel wholly aromatic polyamide-hydrazides containing various proportions of para-phenylene and meta-phenylene units III. Preparation and properties of semi-permeable membranes for water desalination by reverse osmosis separation performance. Eur. Polym. J. 2003, 39, 1653–1667.
  • C. H. Ahn, Y. Baek, C. Lee, S. O. Kim, S. Kim, S. Lee. Carbon nanotube-based membranes: fabrication and application to desalination. J. Indus. Engineer. Chem. 2012, 18, 1551–1559.
  • M. Amini, M. Jahanshahi, A. Rahimpour. Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Membr. Sci. 2013, 435, 233–241.
  • L. Brunet, D. Y. Lyon, K. Zodrow, J. C. Rouch, B. Caussat, P. Serp. Properties of membranes containing semi-dispersed carbon nanotubes. Environ. Engineer. Science. 2008,25(4), 565-576.
  • E. Celik, H. Park, H. Choi, H. Choi. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 2011, 45, 274–282.
  • H. A. Shawky, S. -R. Chae, S. Lin, M. R. Wiesner. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 2011, 272, 46–50.
  • R. Das, M. E. Ali, S. B. A. Hamid, S. Ramakrishna, Z. Z. Chowdhury. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 2014, 336, 97–109.
  • X. Qu, P. J. Alvarez, Q Li. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946.
  • M. S. Mauter, M. Elimelech. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859.
  • K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, L. Bocquet. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073.
  • J. Han, X. Bu, D. Zhou, H. Zhang, B. Yang. Discriminating Cr(III) and Cr(VI) using aqueous CdTe quantum dots with various surface ligands. RSC Adv. 2014, 4, 32946–32952.
  • H. Feng, K. Pan, X. Lv, B.Yang, Z. Cui. High performance polymer carbon dots for detection of chromium (VI) ions in water. AIP Conference Proceed. 2017, 1829, 020045.
  • E. Punrat, C. Maksuk, S. Chuanuwatanakul, W. Wonsawat, O. Chailapakul. Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta, 2016, 150, 198–205.
  • D. L. Zhao, S. Das, T. S. Chung. Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process. Environ. Sci. Technol. 2017, 51, 14016–14023.
  • W. Gai, D. L. Zhao, T. S. Chung. Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. J. Membr. Sci. 2018, 551, 94–102.
  • J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.
  • F. Fornasiero, H. G. Park, J. K. Holt, M. Stadermann, C. P. Grigoropoulos, A. Noy. Ion exclusion by sub-2-nm carbon nanotube pores. Proceed. Nat. Acad. Sci. 2008, 105, 17250–17255.
  • B. Corry. Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Ener. Environ. Sci. 2011, 4, 751–759.
  • H. Y. Yang, Z. J. Han, S. F. Yu, K. L. Pey, K. Ostrikov, R. Karnik. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Communicat. 2013, 4, 3220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.